作者:OpenSLee
1、float IP的創(chuàng)建
搜索float雙擊Floating-point
1 > Operation Selection 我們這里選擇浮點(diǎn)數(shù)的加減法驗證。
2 > Precision of Inputs 我們選擇單晶浮點(diǎn)數(shù)(Single),指數(shù)位寬Exponent Width 8bit 尾數(shù)位寬24 bit
3 > Optimizations默認(rèn)值
4 > Interface Options Latency選擇1
2、浮點(diǎn)IP加減法的仿真驗證
我們用python 自動生成100000個隨機(jī)浮點(diǎn)數(shù)a和b以及a和b的相加或相減的結(jié)果。
python代碼(float32(a)+float32(b)=float32(c)):
import bitstring, random span = 10000000 iteration = 100000 def ieee754(flt): b = bitstring.BitArray(float=flt, length=32) return b with open("TestAdd.txt", "w") as f: for i in range(iteration): a = ieee754(random.uniform(-span, span)) b = ieee754(random.uniform(-span, span)) ab = ieee754(a.float + b.float) f.write(a.hex +"_" + b.hex + "_" + ab.hex + "/n")
浮點(diǎn)數(shù)加法驗證python結(jié)果(部分):
4a953fc4_ca39838f_49e1f7f2 4b14900e_492290ab_4b1eb919 4aedbfc3_4b146c7e_4b85a630 ca4bb7f6_cb162f1d_cb491d1a ca1ca77e_4ad19cc6_4a834907 c96e52c3_c9c7778d_ca1f5077 4ab9c1cc_cb187d76_ca6e7240 4b18508e_4a8e5556_4b5f7b39 cb103fa5_ca1765cf_cb361919 4a09db98_ca2feb0d_c9183dd4 ca626910_4a991e54_499fa730 c983aaa6_4b0534fd_4ae97f50 49e9e5f2_cad6005d_ca9b86e0 491b3266_4a3e2d28_4a64f9c2 ca935d66_caae8cbc_cb20f511 4a150544_4a645ebe_4abcb201
3、xilinx float IP的加法驗證
s_axis_a_tdata,s_axis_b_tdata和m_axis_result_tdata分別代表浮點(diǎn)操作的a,b和結(jié)果c。
s_axis_operation_tdata的最低位為0時為加法,為1時為減法運(yùn)算。
m_axis_result_tvalid當(dāng)次信號為1時,結(jié)果有效。
浮點(diǎn)數(shù)加減法仿真頂層Float_AddSub_tb:
`timescale 1ns / 1ps `define N_TESTS 100000 module Float_AddSub_tb(); reg aclk; reg s_axis_a_tvalid; wire s_axis_a_tready; reg [31 : 0] s_axis_a_tdata; reg s_axis_b_tvalid; wire s_axis_b_tready; reg [31 : 0] s_axis_b_tdata; reg s_axis_operation_tvalid; wire s_axis_operation_tready; reg [7 : 0] s_axis_operation_tdata; wire m_axis_result_tvalid; reg m_axis_result_tready; wire [31 : 0] m_axis_result_tdata; reg [95:0] testVector [`N_TESTS-1:0]; reg test_stop; reg [31:0] Expected_result; reg [31:0] Expected_result_r; integer mcd; integer test_n; integer pass; integer error; initial begin aclk = 0; test_n = 0; pass =0; error = 0; test_stop =0; s_axis_a_tvalid = 0; s_axis_b_tvalid = 0; Expected_result = 0; Expected_result_r = 0; s_axis_a_tdata = 0; s_axis_b_tdata = 0; s_axis_operation_tvalid = 1; s_axis_operation_tdata =8'b0000_0000;//Add //s_axis_operation_tdata =8'b0000_0001;//Sub m_axis_result_tready = 1; $readmemh("TestAdd.txt", testVector);//Add mcd = $fopen("ResultsAdd.txt");//Add //$readmemh("TestSub.txt", testVector);//Sub //mcd = $fopen("ResultsSub.txt");//Sub repeat(100000) begin #10 test_n = test_n + 1'b1; end wait(test_stop==1'b1)begin $fclose(mcd); $finish; end end always #(5) aclk = ~aclk; always @(posedge aclk) begin Expected_result_r %d",test_n); pass = pass + 1'b1; end if ((m_axis_result_tvalid == 1) && (m_axis_result_tdata[31:11] != Expected_result_r[31:11])) begin $fdisplay (mcd,"Test Failed Expected Result = %h, Obtained s_axis_b_tdata = %h, Test Number -> %d",Expected_result,s_axis_b_tdata,test_n); error = error + 1'b1; end if (test_n >= `N_TESTS) begin $fdisplay(mcd,"Completed %d tests, %d passed and %d fails.", test_n, pass, error); test_stop = 1'b1; end end //----------- Begin Cut here for INSTANTIATION Template ---// INST_TAG floating_AddSUB your_instance_name ( .aclk(aclk), // input wire aclk .s_axis_a_tvalid(s_axis_a_tvalid), // input wire s_axis_a_tvalid .s_axis_a_tready(s_axis_a_tready), // output wire s_axis_a_tready .s_axis_a_tdata(s_axis_a_tdata), // input wire [31 : 0] s_axis_a_tdata .s_axis_b_tvalid(s_axis_b_tvalid), // input wire s_axis_b_tvalid .s_axis_b_tready(s_axis_b_tready), // output wire s_axis_b_tready .s_axis_b_tdata(s_axis_b_tdata), // input wire [31 : 0] s_axis_b_tdata .s_axis_operation_tvalid(s_axis_operation_tvalid), // input wire s_axis_operation_tvalid .s_axis_operation_tready(s_axis_operation_tready), // output wire s_axis_operation_tready .s_axis_operation_tdata(s_axis_operation_tdata), // input wire [7 : 0] s_axis_operation_tdata .m_axis_result_tvalid(m_axis_result_tvalid), // output wire m_axis_result_tvalid .m_axis_result_tready(m_axis_result_tready), // input wire m_axis_result_tready .m_axis_result_tdata(m_axis_result_tdata) // output wire [31 : 0] m_axis_result_tdata ); endmodule
仿真結(jié)果:
Completed 100000 tests, 99999 passed and 0 fails.
通過仿真xilinx浮點(diǎn)ip的計算結(jié)果與python代碼的輸出結(jié)果一致,仿真成功。大家可以按照此方法仿真其他的算法中的計算公式或過程。首先利用C、matlab或者python等高級語言將算法的輸入和輸出一起打印出來,然后再讀入到verilog的算法模型里面,通過打印出計算結(jié)果或誤差來分析我們自己的算法的錯誤或者誤差出現(xiàn)在哪里。
編輯:hfy
-
Xilinx
+關(guān)注
關(guān)注
71文章
2171瀏覽量
121938 -
仿真
+關(guān)注
關(guān)注
50文章
4124瀏覽量
133874 -
python
+關(guān)注
關(guān)注
56文章
4807瀏覽量
84957
發(fā)布評論請先 登錄
相關(guān)推薦
評論