色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

總線I2C和SPI是什么,詳解二者之間的對比

云創(chuàng)硬見 ? 來源:云創(chuàng)硬見 ? 作者:云創(chuàng)硬見 ? 2020-10-13 11:18 ? 次閱讀

IIC vs SPI

現(xiàn)今,在低端數(shù)字通信應用領域,我們隨處可見IIC (Inter-Integrated Circuit) 和 SPI (Serial Peripheral Interface)的身影。原因是這兩種通信協(xié)議非常適合近距離低速芯片間通信。Philips(for IIC)和Motorola(for SPI) 出于不同背景和市場需求制定了這兩種標準通信協(xié)議。

IIC 開發(fā)于1982年,當時是為了給電視機內(nèi)的CPU和外圍芯片提供更簡易的互聯(lián)方式。電視機是最早的嵌入式系統(tǒng)之一,而最初的嵌入系統(tǒng)是使用內(nèi)存映射(memory-mapped I/O)的方式來互聯(lián)微控制器和外圍設備的。要實現(xiàn)內(nèi)存映射,設備必須并聯(lián)入微控制器的數(shù)據(jù)線和地址線,這種方式在連接多個外設時需大量線路和額外地址解碼芯片,很不方便并且成本高。

為了節(jié)省微控制器的引腳和和額外的邏輯芯片,使印刷電路板更簡單,成本更低,位于荷蘭的Philips實驗室開發(fā)了 ‘Inter-Integrated Circuit’,IIC 或 IIC ,一種只使用二根線接連所有外圍芯片的總線協(xié)議。最初的標準定義總線速度為100kbps。經(jīng)歷幾次修訂,主要是1995年的400kbps,1998的3.4Mbps。

有跡象表明,SPI總線首次推出是在1979年,Motorola公司將SPI總線集成在他們第一支改自68000微處理器的微控制器芯片上。SPI總線是微控制器四線的外部總線(相對于內(nèi)部總線)。與IIC不同,SPI沒有明文標準,只是一種事實標準,對通信操作的實現(xiàn)只作一般的抽象描述,芯片廠商與驅動開發(fā)者通過data sheets和application notes溝通實現(xiàn)上的細節(jié)。

SPI

對于有經(jīng)驗的數(shù)字電子工程師來說,用SPI互聯(lián)兩支數(shù)字設備是相當直觀的。SPI是種四根信號線協(xié)議(如圖):

SCLK: Serial Clock (output from master);

MOSI; SIMO: Master Output, Slave Input(output from master);

MISO; SOMI: Master Input, Slave Output(output from slave);

SS: Slave Select (active low, outputfrom master)。

SPI是[單主設備( single-master )]通信協(xié)議,這意味著總線中的只有一支中心設備能發(fā)起通信。當SPI主設備想讀/寫[從設備]時,它首先拉低[從設備]對應的SS線(SS是低電平有效),接著開始發(fā)送工作脈沖到時鐘線上,在相應的脈沖時間上,[主設備]把信號發(fā)到MOSI實現(xiàn)“寫”,同時可對MISO采樣而實現(xiàn)“讀”,如下圖:

SPI有四種操作模式——模式0、模式1、模式2和模式3,它們的區(qū)別是定義了在時鐘脈沖的哪條邊沿轉換(toggles)輸出信號,哪條邊沿采樣輸入信號,還有時鐘脈沖的穩(wěn)定電平值(就是時鐘信號無效時是高還是低)。每種模式由一對參數(shù)刻畫,它們稱為時鐘極(clock polarity)CPOL與時鐘期(clock phase)CPHA。

[主從設備]必須使用相同的工作參數(shù)——SCLK、CPOL 和 CPHA,才能正常工作。如果有多個[從設備],并且它們使用了不同的工作參數(shù),那么[主設備]必須在讀寫不同[從設備]間重新配置這些參數(shù)。以上SPI總線協(xié)議的主要內(nèi)容。SPI不規(guī)定最大傳輸速率,沒有地址方案;SPI也沒規(guī)定通信應答機制,沒有規(guī)定流控制規(guī)則。事實上,SPI[主設備]甚至并不知道指定的[從設備]是否存在。這些通信控制都得通過SPI協(xié)議以外自行實現(xiàn)。例如,要用SPI連接一支[命令-響應控制型]解碼芯片,則必須在SPI的基礎上實現(xiàn)更高級的通信協(xié)議。SPI并不關心物理接口電氣特性,例如信號的標準電壓。在最初,大多數(shù)SPI應用都是使用間斷性時鐘脈沖和以字節(jié)為單位傳輸數(shù)據(jù)的,但現(xiàn)在有很多變種實現(xiàn)了連續(xù)性時間脈沖和任意長度的數(shù)據(jù)幀。

IIC

與SPI的單主設備不同,IIC 是多主設備的總線,IIC沒有物理的芯片選擇信號線,沒有仲裁邏輯電路,只使用兩條信號線—— ‘serial data’ (SDA) 和 ‘serial clock’ (SCL)。IIC協(xié)議規(guī)定:

第一,每一支IIC設備都有一個唯一的七位設備地址;

第二,數(shù)據(jù)幀大小為8位的字節(jié);

第三,數(shù)據(jù)(幀)中的某些數(shù)據(jù)位用于控制通信的開始、停止、方向(讀寫)和應答機制。

IIC 數(shù)據(jù)傳輸速率有標準模式(100 kbps)、快速模式(400 kbps)和高速模式(3.4 Mbps),另外一些變種實現(xiàn)了低速模式(10 kbps)和快速+模式(1 Mbps)。

物理實現(xiàn)上,IIC 總線由兩根信號線和一根地線組成。兩根信號線都是雙向傳輸?shù)模瑓⒖枷聢D。IIC協(xié)議標準規(guī)定發(fā)起通信的設備稱為主設備,主設備發(fā)起一次通信后,其它設備均為從設備。

IIC 通信過程大概如下。首先,主設備發(fā)一個START信號,這個信號就像對所有其它設備喊:請大家注意!然后其它設備開始監(jiān)聽總線以準備接收數(shù)據(jù)。接著,主設備發(fā)送一個7位設備地址加一位的讀寫操作的數(shù)據(jù)幀。當所設備接收數(shù)據(jù)后,比對地址自己是否目標設備。如果比對不符,設備進入等待狀態(tài),等待STOP信號的來臨;如果比對相符,設備會發(fā)送一個應答信號——ACKNOWLEDGE作回應。

當主設備收到應答后便開始傳送或接收數(shù)據(jù)。數(shù)據(jù)幀大小為8位,尾隨一位的應答信號。主設備發(fā)送數(shù)據(jù),從設備應答;相反主設備接數(shù)據(jù),主設備應答。當數(shù)據(jù)傳送完畢,主設備發(fā)送一個STOP信號,向其它設備宣告釋放總線,其它設備回到初始狀態(tài)。

基于IIC總線的物理結構,總線上的START和STOP信號必定是唯一的。另外,IIC總線標準規(guī)定SDA線的數(shù)據(jù)轉換必須在SCL線的低電平期,在SCL線的高電平期,SDA線的上數(shù)據(jù)是穩(wěn)定的。

在物理實現(xiàn)上,SCL線和SDA線都是漏極開路(open-drain),通過上拉電阻外加一個電壓源。當把線路接地時,線路為邏輯0,當釋放線路,線路空閑時,線路為邏輯1。基于這些特性,IIC設備對總線的操作僅有“把線路接地”——輸出邏輯0。IIC總線設計只使用了兩條線,但相當優(yōu)雅地實現(xiàn)任意數(shù)目設備間無縫通信,堪稱完美。我們設想一下,如果有兩支設備同時向SCL線和SDA線發(fā)送信息會出現(xiàn)什么情況。

基于IIC總線的設計,線路上不可能出現(xiàn)電平?jīng)_突現(xiàn)象。如果一支設備發(fā)送邏輯0,其它發(fā)送邏輯1,那么線路看到的只有邏輯0。也就是說,如果出現(xiàn)電平?jīng)_突,發(fā)送邏輯0的始終是“贏家”。總線的物理結構亦允許主設備在往總線寫數(shù)據(jù)的同時讀取數(shù)據(jù)。這樣,任何設備都可以檢測沖突的發(fā)生。當兩支主設備競爭總線的時候,“贏家”并不知道競爭的發(fā)生,只有“輸家”發(fā)現(xiàn)了沖突——當它寫一個邏輯1,卻讀到0時——而退出競爭。

10位設備地址

任何IIC設備都有一個7位地址,理論上,現(xiàn)實中只能有127種不同的IIC設備。實際上,已有IIC的設備種類遠遠多于這個限制,在一條總線上出現(xiàn)相同的地址的IIC設備的概率相當高。為了突破這個限制,很多設備使用了雙重地址——7位地址加引腳地址(external configuration pins)。IIC 標準也預知了這種限制,提出10位的地址方案。

10位的地址方案對 IIC協(xié)議的影響有兩點:

第一,地址幀為兩個字節(jié)長,原來的是一個字節(jié);

第二,第一個字節(jié)前五位最高有效位用作10位地址標識,約定是“11110”。

除了10位地址標識,標準還預留了一些地址碼用作其它用途,如下表:

時鐘拉伸

在 IIC 通信中,主設備決定了時鐘速度。因為時鐘脈沖信號是由主設備顯式發(fā)出的。但是,當從設備沒辦法跟上主設備的速度時,從設備需要一種機制來請求主設備慢一點。這種機制稱為時鐘拉伸,而基于I2C結構的特殊性,這種機制得到實現(xiàn)。當從設備需要降低傳輸?shù)乃俣鹊臅r候,它可以按下時鐘線,逼迫主設備進入等待狀態(tài),直到從設備釋放時鐘線,通信才繼續(xù)。

高速模式

原理上講,使用上拉電阻來設置邏輯1會限制總線的最大傳輸速度。而速度是限制總線應用的因素之一。這也說明為什么要引入高速模式(3.4 Mbps)。在發(fā)起一次高速模式傳輸前,主設備必須先在低速的模式下(例如快速模式)發(fā)出特定的“High Speed Master”信號。為縮短信號的周期和提高總線速度,高速模式必須使用額外的I/O緩沖區(qū)。另外,總線仲裁在高速模式下可屏蔽掉。更多的信息請參與總線標準文檔。

IIC vs SPI: 哪位是贏家?

我們來對比一下IIC 和 SPI的一些關鍵點:

第一,總線拓撲結構/信號路由/硬件資源耗費

IIC 只需兩根信號線,而標準SPI至少四根信號,如果有多個從設備,信號需要更多。一些SPI變種雖然只使用三根線——SCLK, SS和雙向的MISO/MOSI,但SS線還是要和從設備一對一根。另外,如果SPI要實現(xiàn)多主設備結構,總線系統(tǒng)需額外的邏輯和線路。用IIC 構建系統(tǒng)總線唯一的問題是有限的7位地址空間,但這個問題新標準已經(jīng)解決——使用10位地址。從第一點上看,IIC是明顯的大贏家。

第二,數(shù)據(jù)吞吐/傳輸速度

如果應用中必須使用高速數(shù)據(jù)傳輸,那么SPI是必然的選擇。因為SPI是全雙工,IIC 的不是。SPI沒有定義速度限制,一般的實現(xiàn)通常能達到甚至超過10 Mbps。IIC 最高的速度也就快速+模式(1 Mbps)和高速模式(3.4 Mbps),后面的模式還需要額外的I/O緩沖區(qū),還并不是總是容易實現(xiàn)的。

第三,優(yōu)雅性

IIC 常被稱更優(yōu)雅于SPI。公正的說,我們更傾向于認為兩者同等優(yōu)雅和健壯。IIC的優(yōu)雅在于它的特色——用很輕盈的架構實現(xiàn)了多主設備仲裁和設備路由。但是對使用的工程師來講,理解總線結構更費勁,而且總線的性能不高。

SPI的優(yōu)點在于它的結構相當?shù)闹庇^簡單,容易實現(xiàn),并且有很好擴展性。SPI的簡單性不足稱其優(yōu)雅,因為要用SPI搭建一個有用的通信平臺,還需要在SPI之上構建特定的通信協(xié)議軟件。也就是說要想獲得SPI特有而IIC沒有的特性——高速性能,工程師們需要付出更多的勞動。另外,這種自定的工作是完全自由的,這也說明為什么SPI沒有官方標準。IIC和SPI都對低速設備通信提供了很好的支持,不過,SPI適合數(shù)據(jù)流應用,而IIC更適合“字節(jié)設備”的多主設備應用。

小結

在數(shù)字通信協(xié)議簇中,IIC和SPI常稱為“小”協(xié)議,相對EthernetUSBSATA, PCI-Express等傳輸速度達數(shù)百上千兆字節(jié)每秒的總線。但是,我們不能忘記的是各種總線的用途是什么。“大”協(xié)議是用于系統(tǒng)外的整個系統(tǒng)之間通信的,“小”協(xié)議是用于系統(tǒng)內(nèi)各芯片間的通信,沒有跡象表明“大”協(xié)議有必要取代“小”協(xié)議。IIC和SPI的存在和流行體現(xiàn)了“夠用就好”的哲學。回應文首,IIC和SPI如此流行,它是任何一位嵌入式工程師必備的工具。

fqj

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 總線
    +關注

    關注

    10

    文章

    2900

    瀏覽量

    88306
  • 數(shù)據(jù)轉換

    關注

    0

    文章

    88

    瀏覽量

    18029
收藏 人收藏

    評論

    相關推薦

    基于I2C總線的智能家居應用

    隨著科技的飛速發(fā)展,智能家居系統(tǒng)已經(jīng)成為現(xiàn)代生活的一個重要組成部分。I2C(Inter-Integrated Circuit)總線是一種串行通信協(xié)議,廣泛應用于微控制器和各種傳感器之間,因其簡單
    的頭像 發(fā)表于 01-17 16:21 ?119次閱讀

    I2C總線的優(yōu)缺點分析

    設備之間的通信,這大大減少了所需的引腳數(shù)量,降低了硬件成本。此外,由于其簡單性,I2C總線也易于實現(xiàn)和維護。 2. 多主機和多從機支持 I2C
    的頭像 發(fā)表于 01-17 15:50 ?143次閱讀

    I2C總線數(shù)據(jù)包結構詳解

    I2C(Inter-Integrated Circuit)總線是一種用于連接微控制器和各種外圍設備的通信協(xié)議。它使用兩條線:串行數(shù)據(jù)線(SDA)和串行時鐘線(SCL),實現(xiàn)了設備之間的簡單、高效通信
    的頭像 發(fā)表于 01-17 15:46 ?162次閱讀

    I2C總線與Arduino的接口示例

    在現(xiàn)代電子設計中,I2C總線因其簡單性和靈活性而廣受歡迎。它允許多個設備共享同一通信線路,從而節(jié)省空間和成本。Arduino,作為一個多功能的微控制器平臺,自然也支持I2C通信。 I2C
    的頭像 發(fā)表于 01-17 15:34 ?183次閱讀

    I2C總線的工作模式介紹

    在現(xiàn)代電子系統(tǒng)中,I2C總線作為一種多主機、多從機的串行通信協(xié)議,扮演著至關重要的角色。它允許多個設備共享同一總線,進行數(shù)據(jù)傳輸,從而簡化了系統(tǒng)設計并降低了成本。 I2C
    的頭像 發(fā)表于 01-17 15:32 ?143次閱讀

    I2C總線協(xié)議詳細解析

    1. I2C總線簡介 I2C總線由Philips Semiconductor(現(xiàn)為NXP Semiconductors)在1980年代初期開發(fā)。它是一種多主機
    的頭像 發(fā)表于 01-17 15:22 ?184次閱讀

    I2C總線故障排除技巧

    I2C總線是一種廣泛使用的串行通信協(xié)議,它允許多個設備在兩條線上(數(shù)據(jù)線SDA和時鐘線SCL)進行通信。由于其簡單性和靈活性,I2C總線在嵌入式系統(tǒng)中非常流行。然而,當
    的頭像 發(fā)表于 01-17 15:20 ?191次閱讀

    I2C總線應用實例分析

    在現(xiàn)代電子系統(tǒng)中,I2C總線因其簡單、靈活和高效的特點而被廣泛應用于各種設備之間的通信。 I2C總線概述
    的頭像 發(fā)表于 01-17 15:09 ?170次閱讀

    I2C總線SPI總線的比較

    在現(xiàn)代電子系統(tǒng)中,微控制器與各種外設之間的通信是必不可少的。I2CSPI是兩種流行的串行通信協(xié)議,它們各自具有獨特的特點和應用場景。 I2C總線
    的頭像 發(fā)表于 01-17 15:08 ?164次閱讀

    I2C總線上拉電阻阻值如何確定?

    導讀I2C總線在產(chǎn)品設計中被廣泛應用,盡管其結構簡單,但經(jīng)常發(fā)生上拉電阻設計不合理的問題。本文將對I2C上拉電阻的選擇進行簡要分析。一根信號線上,通過電阻連接一個固定的高電平VCC,信號線初始、空閑
    的頭像 發(fā)表于 12-27 11:34 ?990次閱讀
    <b class='flag-5'>I2C</b><b class='flag-5'>總線</b>上拉電阻阻值如何確定?

    詳解I2C總線SPI總線的區(qū)別

    I2C(Inter-Integrated Circuit)表示集成電路互連,是一種用于線路板內(nèi)部芯片之間通信的總線
    的頭像 發(fā)表于 10-16 15:16 ?6156次閱讀
    <b class='flag-5'>詳解</b><b class='flag-5'>I2C</b><b class='flag-5'>總線</b>與<b class='flag-5'>SPI</b><b class='flag-5'>總線</b>的區(qū)別

    了解I2C總線

    電子發(fā)燒友網(wǎng)站提供《了解I2C總線.pdf》資料免費下載
    發(fā)表于 10-08 11:13 ?2次下載
    了解<b class='flag-5'>I2C</b><b class='flag-5'>總線</b>

    物聯(lián)網(wǎng)嵌入式軟件中的I2C總線設計詳解

    基本概念、特點、通信協(xié)議,以及在不同場景下的高級應用和最佳實踐。I2C接口只有2根信號線,總線上可以連接多個設備,硬件實現(xiàn)簡單,可擴展性強。I2C通信協(xié)議可以用普通GPIO引腳進行軟件
    的頭像 發(fā)表于 09-29 16:21 ?530次閱讀
    物聯(lián)網(wǎng)嵌入式軟件中的<b class='flag-5'>I2C</b><b class='flag-5'>總線</b>設計<b class='flag-5'>詳解</b>

    SPII2C通信協(xié)議:應用與區(qū)別

    本文深入解析了SPII2C這兩種通信協(xié)議的特點、工作原理和應用場景。SPI適用于高速數(shù)據(jù)傳輸,常用于存儲器芯片和顯示器驅動等領域;I2C適用于低速控制和傳感器數(shù)據(jù)傳輸,常用于溫度傳感
    的頭像 發(fā)表于 04-22 16:45 ?1942次閱讀

    在STM32中,通信串口USART與I2C之間有啥原理上的區(qū)別?二者之間又有什么聯(lián)系?

    請問一下,在STM32中,通信串口USART與I2C之間有啥原理上的區(qū)別?二者之間又有什么聯(lián)系?對于所有的通信之間,又存在什么樣的關聯(lián)?
    發(fā)表于 03-25 07:27
    主站蜘蛛池模板: 日产精品高潮呻吟AV久久 | 在线观看国产亚洲 | www色小姐 | 久久久亚洲国产精品主播 | 青青草原免费在线 | 在线观看国产小视频 | 一个人高清在线观看日本免费 | 女性性纵欲派对 | 国产麻豆剧果冻传媒免费网站 | 欧美成ee人免费视频 | xxxx俄罗斯1819 | 日本xxxx19| 曰批国产精品视频免费观看 | 久久久久久久久人体 | 69国产精品人妻无码免费 | 日本内射精品一区二区视频 | 亚洲伊人精品 | 国偷自产视频一区二区99 | 色狠狠一区 | 99久久精品免费看国产免费 | 快播成电影人网址 | 一个人在线观看免费高清视频 | 日韩a视频在线观看 | 做i爱视频30分钟免费 | 国产 亚洲 中文字幕 久久网 | 亚洲中文字幕日产乱码2020 | 日本国产成人精品无码区在线网站 | 久久WWW免费人成一看片 | 国产成人久视频免费 | 理论片午午伦夜理片影院 | 99久久久无码国产精品不卡按摩 | 国产-第1页-浮力影院 | 亚洲综合免费视频 | 最近中文字幕MV高清在线 | 国产精品欧美久久久久天天影视 | 国产网红主播精品福利大秀专区 | 美女被撕开胸罩狂揉大乳 | 亚洲一品AV片观看五月色婷婷 | 免费一区在线观看 | 韩国女人高潮嗷嗷叫视频 | 99热久久视频只有精品6 |