色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

神經(jīng)網(wǎng)絡(luò)為何無法實(shí)現(xiàn)人類的推理并產(chǎn)生意識?

倩倩 ? 來源:知識就是力量 ? 2020-04-17 15:16 ? 次閱讀

前不久,據(jù)華爾街日報報道, Uber在一宗無人車的測試過程中,造成了一名行人死亡的嚴(yán)重交通事故,除此之外,環(huán)顧我們身邊,蘋果手機(jī)的虛擬個人助理Siri有時會無法識別我們在說什么;某些人臉識別支付應(yīng)用也存在著一些安全問題。這些事件反映出來的一個情況是,目前的AI似乎并沒有足夠的智能,甚至并無法很好地處理從外界獲取的信息

人腦中的神經(jīng)網(wǎng)絡(luò)是一個非常復(fù)雜的組織,成人的大腦中約有1000億個神經(jīng)元,人類至今仍在探索人腦的工作原理。而人們通過對生物神經(jīng)元的研究和理解,構(gòu)建了一個模擬人腦的計算模型:人工神經(jīng)網(wǎng)絡(luò)!

那么,人工神經(jīng)網(wǎng)絡(luò)是什么?人類通過構(gòu)造神經(jīng)網(wǎng)絡(luò),能否給AI賦能,使之自我進(jìn)化?

什么是神經(jīng)網(wǎng)絡(luò)?

簡單來說,神經(jīng)網(wǎng)絡(luò)是一種模擬人腦的計算架構(gòu);利用神經(jīng)網(wǎng)絡(luò)進(jìn)行機(jī)器學(xué)習(xí),則讓計算機(jī)不再只是執(zhí)行命令的機(jī)器,而是具有了一定程度上分析判斷的能力。當(dāng)然,這個能力也離不開海量的數(shù)據(jù)和高超的計算能力。

一個經(jīng)典的神經(jīng)網(wǎng)絡(luò)一般包含三個層次:輸入層、隱藏層和輸出層。而這三個層分別模仿的是神經(jīng)元的樹突、軸突和軸突末梢。輸入層接收外部的輸入數(shù)據(jù),比如圖片、文本、語音等,通過,隱層抽象數(shù)據(jù)的通用模式,進(jìn)而通過輸出層輸出模型的計算的結(jié)果。

歷史上,科學(xué)家還設(shè)計過多層的神經(jīng)網(wǎng)絡(luò),每一層都會對前一層傳來的結(jié)果進(jìn)行再次加工,目的是模擬出一種“深思熟慮”的感覺,但最后發(fā)現(xiàn)結(jié)果準(zhǔn)確度并沒有提高,有的時候還會陷入誤區(qū),就像人容易朝著一個思路越陷越深,最后鉆牛角尖了一樣。隨著技術(shù)進(jìn)步,讓這一問題得到改善。現(xiàn)在,最厲害的神經(jīng)網(wǎng)絡(luò)技術(shù)不但已經(jīng)非常接近人腦,還排除了很多人腦自身存在的低效的思維方式。

柯潔在與AlphaGo大戰(zhàn)后,在接受騰訊體育記者的采訪時表示,“我也不敢想象,它居然可以把棋下得那么強(qiáng)硬,撐得那么滿,好像好多塊棋扭在一起,那是人類擅長發(fā)揮的地方了。跟它下棋會發(fā)現(xiàn)它處理得好像比我們?nèi)祟愡€好很多,其實(shí)那一刻是很絕望的。甚至是那些研發(fā)它的人也不知道是怎么做到這一點(diǎn)的,研發(fā)它的人是下不過它的,很多人甚至不懂棋,居然能創(chuàng)造出這么一個怪物。所以,我唯一能感受到的是它對形勢的樂觀和自信,而且是絕對的樂觀和自信,這一點(diǎn)人類是沒有的。再自信也不會像它那么自信,無論你驗(yàn)證多少次,它都是不可戰(zhàn)勝的。”

神經(jīng)網(wǎng)絡(luò)為何無法實(shí)現(xiàn)人類的推理并產(chǎn)生意識?

機(jī)器人是否具有意識”一直是人們所爭論的焦點(diǎn)之一,而在這其中,人工神經(jīng)網(wǎng)絡(luò)的技術(shù)發(fā)展起著重要的作用。對當(dāng)前的人工神經(jīng)網(wǎng)絡(luò)而言,解決某些特定場景的問題,特別具有優(yōu)勢,但解決人們習(xí)以為常的問題卻非常困難。比如,MIT媒體實(shí)驗(yàn)室研究員joy buolamwini研究文章稱,人臉識別技術(shù)針對不同種族的準(zhǔn)確率差異巨大,其中針對黑人女性的錯誤率高達(dá)35%!

中國工程院院士鄭南寧指出,人工智能研究的一個重要方向,是借鑒認(rèn)知科學(xué)、計算神經(jīng)科學(xué)的研究成果,使計算機(jī)通過直覺推理和經(jīng)驗(yàn)學(xué)習(xí),將自身引導(dǎo)到更高的層次。然而,人腦對真實(shí)世界的理解、非完整信息的處理、復(fù)雜時空的任務(wù)處理能力是當(dāng)前機(jī)器學(xué)習(xí)無法比擬的,還有人的大腦神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)的可塑性,以及人腦在非認(rèn)知因素和認(rèn)知功能之間的相互作用,都是很難以形式化、公式化的描述。

神經(jīng)網(wǎng)絡(luò)是怎么應(yīng)用到各領(lǐng)域的?

神經(jīng)網(wǎng)絡(luò)雖然缺乏人類解決問題的強(qiáng)大理解能力,但卻可以通過海量的計算從大量的數(shù)據(jù)中找到一些通用的模式。因此它們作為輔助工具,已經(jīng)在各行各業(yè),尤其是在多媒體領(lǐng)域體現(xiàn)了自身的價值。

手寫數(shù)字識別應(yīng)該是神經(jīng)網(wǎng)絡(luò)最早的商業(yè)應(yīng)用之一。大部分的人都可以輕松識別下圖中的手寫數(shù)字,但要設(shè)計一套計算機(jī)程序來識別這些數(shù)字,就會發(fā)現(xiàn)視覺模式識別的難度。而神經(jīng)網(wǎng)絡(luò)的思想是,利用大量的手寫數(shù)字,即訓(xùn)練樣本,從中自動學(xué)習(xí)到識別各個數(shù)字的規(guī)則。而且隨著樣本數(shù)量的增加,神經(jīng)網(wǎng)絡(luò)可以學(xué)習(xí)到更多信息,從而可以進(jìn)一步提升準(zhǔn)確度。目前最好的商用神經(jīng)網(wǎng)絡(luò)已經(jīng)足夠好到能被銀行用來處理支票,以及被郵局用來識別地址。

MNIST手寫數(shù)字?jǐn)?shù)據(jù)集一覽

手寫數(shù)字或許有些過于簡單,那么使用神經(jīng)網(wǎng)絡(luò)發(fā)現(xiàn)地外行星,就更能顯示它的能力了。谷歌和得克薩斯大學(xué)奧斯丁分校合作,利用上萬顆被標(biāo)記的恒星數(shù)據(jù),訓(xùn)練了一個卷積神經(jīng)網(wǎng)絡(luò),訓(xùn)練結(jié)果顯示,神經(jīng)網(wǎng)絡(luò)判別行星的準(zhǔn)確率高達(dá)96%。然后,研究人員讓這個神經(jīng)網(wǎng)絡(luò)處理2009年到2013年觀測到的670顆恒星的數(shù)據(jù)集,通過微小的特征變化,發(fā)現(xiàn)了兩個星系存在地外行星的可能性非常高。經(jīng)過研究人員的驗(yàn)證,確認(rèn)了這兩顆新的行星。

神經(jīng)網(wǎng)絡(luò)發(fā)現(xiàn)的開普勒-90星系與太陽系的對比

近日,美國FDA首次批準(zhǔn)了用于檢測糖尿病視網(wǎng)膜病變的人工智能產(chǎn)品:IDx-DR。這次FDA評估了來自10個初級衛(wèi)生保健點(diǎn)的900名糖尿病患者的視網(wǎng)膜臨床研究圖像數(shù)據(jù),IDx-DR能夠正確識別輕度以上糖尿病性視網(wǎng)膜病變的準(zhǔn)確率為87.4%,而正確識別沒有輕度以上的糖尿病性視網(wǎng)膜病變的準(zhǔn)確率為89.5%。

在目前比較火熱的無人車領(lǐng)域,雖然各大廠商還在研究測試通用的解決方案,但在一些具體的案例上已經(jīng)有了一些成果。圖森未來使用自主研發(fā)的深度學(xué)習(xí)感知算法,能夠做到讓攝像頭像人眼一樣實(shí)時感知行車周邊環(huán)境,檢測和跟蹤視野中的各種物體,能夠?qū)梢晥鼍斑M(jìn)行像素級的解讀。憑借視覺高精度定位和多傳感器融合技術(shù),能夠?qū)崿F(xiàn)高速公路上的無人駕駛,幫助貨運(yùn)企業(yè)降低成本,加快貨運(yùn)周轉(zhuǎn)。

總之,神經(jīng)網(wǎng)絡(luò)在不斷地影響著生活、醫(yī)療和出行,但科研界對它有更多理性的看法。伯克利大學(xué)機(jī)器學(xué)習(xí)專家Michael I. Jordan認(rèn)為,計算機(jī)科學(xué)仍然是最首要的學(xué)科,人工智能還無法取而代之,而神經(jīng)網(wǎng)絡(luò)只是該領(lǐng)域中仍在發(fā)展中的一個部份。

“現(xiàn)在要問神經(jīng)網(wǎng)絡(luò)會把我們帶多遠(yuǎn)還為時尚早。”最看好神經(jīng)網(wǎng)絡(luò)發(fā)展前景的專家題討論成員——OpenAI共同創(chuàng)辦人兼研究總監(jiān)Ilya Sutskever表示,“這些模型很難理解。例如,將機(jī)器視覺作為一種程序真的很不可思議,但現(xiàn)在我們對不可思議的問題都能提出不可思議的解決方案了。”

無論如何,我們目前正處理人工智能對社會的變革過程中,它們已經(jīng)從實(shí)驗(yàn)室過渡到了商業(yè)部署。無疑,廣泛的工業(yè)領(lǐng)域?qū)⑹艿烬嫶蟮臄?shù)據(jù)和數(shù)據(jù)分析功能的深遠(yuǎn)影響。盡管神經(jīng)網(wǎng)絡(luò)還無法實(shí)現(xiàn)基本的人類推理和理解力,但它們將是建構(gòu)人工智能漫漫長路上所用到的重要工具之一。

雖然現(xiàn)在神經(jīng)網(wǎng)絡(luò)還無法產(chǎn)生意識,但隨著信息科學(xué)、認(rèn)知科學(xué)、神經(jīng)生物學(xué)、心理學(xué)等前沿學(xué)科和交叉學(xué)科的深度融合與不斷發(fā)展,人工智能將會迎來新的發(fā)展高潮。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏

    評論

    相關(guān)推薦

    國產(chǎn)芯上運(yùn)行TinyMaxi輕量級的神經(jīng)網(wǎng)絡(luò)推理庫-米爾基于芯馳D9國產(chǎn)商顯板

    本篇測評由優(yōu)秀測評者“短笛君”提供。本文將介紹基于米爾電子MYD-YD9360商顯板(米爾基于芯馳D9360國產(chǎn)開發(fā)板)的TinyMaxi輕量級的神經(jīng)網(wǎng)絡(luò)推理庫方案測試。 算力測試TinyMaix
    發(fā)表于 08-09 18:26

    神經(jīng)網(wǎng)絡(luò)專用硬件實(shí)現(xiàn)的方法和技術(shù)

    神經(jīng)網(wǎng)絡(luò)專用硬件實(shí)現(xiàn)是人工智能領(lǐng)域的一個重要研究方向,旨在通過設(shè)計專門的硬件來加速神經(jīng)網(wǎng)絡(luò)的訓(xùn)練和推理過程,提高計算效率和能效比。以下將詳細(xì)介紹神經(jīng)
    的頭像 發(fā)表于 07-15 10:47 ?1316次閱讀

    遞歸神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)方法

    遞歸神經(jīng)網(wǎng)絡(luò)(Recursive Neural Network,簡稱RNN)是一種特殊類型的神經(jīng)網(wǎng)絡(luò),其特點(diǎn)在于能夠處理具有層次或樹狀結(jié)構(gòu)的數(shù)據(jù),通過遞歸的方式對這些數(shù)據(jù)進(jìn)行建模。與循環(huán)神經(jīng)
    的頭像 發(fā)表于 07-10 17:02 ?372次閱讀

    如何在FPGA上實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)

    可編程門陣列(FPGA)作為一種靈活、高效的硬件實(shí)現(xiàn)方式,為神經(jīng)網(wǎng)絡(luò)的加速提供了新的思路。本文將從FPGA實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)的基本原理、關(guān)鍵技術(shù)、實(shí)現(xiàn)
    的頭像 發(fā)表于 07-10 17:01 ?2252次閱讀

    BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)的區(qū)別

    BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡稱ANNs)之間的關(guān)系與區(qū)別,是神經(jīng)網(wǎng)絡(luò)領(lǐng)域中一個基礎(chǔ)且重要的話題。本文將從定義、結(jié)構(gòu)、算法、應(yīng)用及未來發(fā)展等多個方面,詳細(xì)闡述BP
    的頭像 發(fā)表于 07-10 15:20 ?1270次閱讀

    全連接前饋神經(jīng)網(wǎng)絡(luò)與前饋神經(jīng)網(wǎng)絡(luò)的比較

    Neural Network, FCNN)和前饋神經(jīng)網(wǎng)絡(luò)(Feedforward Neural Network, FNN)因其結(jié)構(gòu)簡單、易于理解和實(shí)現(xiàn),成為了研究者們關(guān)注的熱點(diǎn)。本文將從概念、模型結(jié)構(gòu)、優(yōu)缺點(diǎn)以及應(yīng)用場景等方面,對全連接前饋
    的頭像 發(fā)表于 07-09 10:31 ?1w次閱讀

    rnn是遞歸神經(jīng)網(wǎng)絡(luò)還是循環(huán)神經(jīng)網(wǎng)絡(luò)

    RNN(Recurrent Neural Network)是循環(huán)神經(jīng)網(wǎng)絡(luò),而非遞歸神經(jīng)網(wǎng)絡(luò)。循環(huán)神經(jīng)網(wǎng)絡(luò)是一種具有時間序列特性的神經(jīng)網(wǎng)絡(luò),能夠處理序列數(shù)據(jù),具有記憶功能。以下是關(guān)于循環(huán)
    的頭像 發(fā)表于 07-05 09:52 ?631次閱讀

    遞歸神經(jīng)網(wǎng)絡(luò)是循環(huán)神經(jīng)網(wǎng)絡(luò)

    遞歸神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,簡稱RNN)和循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,簡稱RNN)實(shí)際上是同一個概念,只是不同的翻譯方式
    的頭像 發(fā)表于 07-04 14:54 ?856次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)原理

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、視頻分析、自然語言處理等領(lǐng)域。本文將詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)原理、結(jié)構(gòu)
    的頭像 發(fā)表于 07-03 10:49 ?616次閱讀

    bp神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)區(qū)別是什么

    結(jié)構(gòu)、原理、應(yīng)用場景等方面都存在一定的差異。以下是對這兩種神經(jīng)網(wǎng)絡(luò)的比較: 基本結(jié)構(gòu) BP神經(jīng)網(wǎng)絡(luò)是一種多層前饋神經(jīng)網(wǎng)絡(luò),由輸入層、隱藏層和輸出層組成。每個神經(jīng)元之間通過權(quán)重連接,
    的頭像 發(fā)表于 07-03 10:12 ?1325次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)訓(xùn)練的是什么

    、訓(xùn)練過程以及應(yīng)用場景。 1. 卷積神經(jīng)網(wǎng)絡(luò)的基本概念 1.1 卷積神經(jīng)網(wǎng)絡(luò)的定義 卷積神經(jīng)網(wǎng)絡(luò)是一種前饋深度學(xué)習(xí)模型,其核心思想是利用卷積操作提取輸入數(shù)據(jù)的局部特征,通過多層結(jié)構(gòu)進(jìn)
    的頭像 發(fā)表于 07-03 09:15 ?488次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的原理與實(shí)現(xiàn)

    1.卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、視頻分析、自然語言處理等領(lǐng)域。 卷積神經(jīng)網(wǎng)絡(luò)是一種前饋神經(jīng)網(wǎng)絡(luò),其
    的頭像 發(fā)表于 07-02 16:47 ?690次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)和BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Networks,簡稱BPNN)是兩種
    的頭像 發(fā)表于 07-02 14:24 ?4642次閱讀

    神經(jīng)網(wǎng)絡(luò)架構(gòu)有哪些

    神經(jīng)網(wǎng)絡(luò)架構(gòu)是機(jī)器學(xué)習(xí)領(lǐng)域中的核心組成部分,它們模仿了生物神經(jīng)網(wǎng)絡(luò)的運(yùn)作方式,通過復(fù)雜的網(wǎng)絡(luò)結(jié)構(gòu)實(shí)現(xiàn)信息的處理、存儲和傳遞。隨著深度學(xué)習(xí)技術(shù)的不斷發(fā)展,各種
    的頭像 發(fā)表于 07-01 14:16 ?839次閱讀

    神經(jīng)網(wǎng)絡(luò)的基本原理

    神經(jīng)網(wǎng)絡(luò),作為人工智能領(lǐng)域的一個重要分支,其基本原理和運(yùn)作機(jī)制一直是人們研究的熱點(diǎn)。神經(jīng)網(wǎng)絡(luò)的基本原理基于對人類大腦神經(jīng)元結(jié)構(gòu)和功能的模擬,通過大量的
    的頭像 發(fā)表于 07-01 11:47 ?1370次閱讀
    主站蜘蛛池模板: 最近免费中文字幕MV免费高清 | 果冻传媒 在线播放观看 | 久久伊人男人的天堂网站 | 日日摸夜夜嗷嗷叫日日拍 | SORA是什么意思 | 国产午夜亚洲精品一区 | 2022精品福利在线小视频 | 欧美激情精品久久久久久不卡 | 摥管专用动态图399期 | 超碰在线97av视频免费 | 美女扒开尿口让男生添动态图 | 贵妃高h荡肉呻吟np杨玉环 | TUBE19UP老师学生 | 国产亚洲精品AV片在线观看播放 | 久久精品在现线观看免费15 | 亚洲精品白色在线发布 | 裸妇厨房风流在线观看 | 掀开奶罩边躁狠狠躁软学生 | 永久免费精品精品永久-夜色 | 香蕉视频国产精品 | 成人小视频在线观看免费 | 色影音先锋av资源网 | 公和熄洗澡三级中文字幕 | 中文中幕无码亚洲视频 | 国产色婷婷精品人妻蜜桃成熟 | 四虎精品久久久久影院 | 亚洲欧洲日韩国产一区二区三区 | 国产黄A片在线观看永久免费麻豆 | 国产精品青草久久福利不卡 | 99久久精品国产自免费 | 亚洲三级视频在线观看 | p影院永久免费 | 久久xxxx| 亚洲成人网导航 | 久久久久久久99精品免费观看 | 伊在香蕉国产在线视频 | 99免费观看视频 | 含羞草国产亚洲精品岁国产精品 | 狠狠色狠狠色综合曰曰 | 诱受H嗯啊巨肉各种play | 青青草伊人|