色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

使用集成式 eGaN 功率級(jí)構(gòu)建高能量密度電源

丫丫119 ? 來(lái)源:未知 ? 作者:肖冰 ? 2019-08-15 09:38 ? 次閱讀

高能量密度開關(guān)模式電源 (SMPS) 可加快電池充電速度,減小太陽(yáng)能微型逆變器的尺寸,并滿足服務(wù)器農(nóng)場(chǎng)電源要求,絕對(duì)不會(huì)出現(xiàn)過熱現(xiàn)象。然而,工程師現(xiàn)在面臨硅 MOSFETIGBT 的性能極限,這些器件構(gòu)成傳統(tǒng) SMPS 的主要開關(guān)元件。相反,采用增強(qiáng)型氮化鎵 (eGaN)(一種寬帶隙半導(dǎo)體)制成的晶體管現(xiàn)可以克服硅器件的開關(guān)速度和能效限制。

以前,eGaN 晶體管的成本和可用性使其局限于最為復(fù)雜的電源應(yīng)用,但更廣泛的商業(yè)化已經(jīng)解決了這一難題。eGaN 晶體管現(xiàn)已廣泛用于各種應(yīng)用。

本文首先介紹相比基于傳統(tǒng)硅 (Si) MOSFET 或 IGBT 的高頻電源,基于 eGaN 開關(guān)元器件的高頻電源優(yōu)勢(shì)。接著會(huì)介紹如何使用EPC、Texas InstrumentsNavitas Semiconductor的 eGaN 功率級(jí)來(lái)構(gòu)建適用于電池充電或服務(wù)器農(nóng)場(chǎng)等應(yīng)用的 SMPS 設(shè)計(jì)。

高頻優(yōu)勢(shì)

傳統(tǒng) SMPS 通常采用的開關(guān)頻率范圍為數(shù)十至數(shù)百千赫茲 (kHz)?;绢l率的脈沖寬度調(diào)制 (PWM) 的占空比決定了電源的電壓輸出。

較高開關(guān)頻率的主要優(yōu)勢(shì)在于減小了電感器、變壓器和電阻器等外設(shè)元器件的尺寸。因而,設(shè)計(jì)人員就可以在保持同等輸出功率的情況下簡(jiǎn)化設(shè)計(jì),從而增加能量密度。此外,SMPS 輸出端的電流和電壓紋波也會(huì)減少,從而降低了電磁干擾 (EMI) 的風(fēng)險(xiǎn)和濾波器電路的成本,并縮小了尺寸。

然而,傳統(tǒng)硅功率 MOSFET 和 IGBT 開關(guān)速度相對(duì)較慢,每次開通閉合時(shí),器件耗散功率相當(dāng)大。隨著頻率的提高,功耗會(huì)成倍增加,導(dǎo)致能效降低和芯片溫度升高。開關(guān)速度慢且開關(guān)功耗大,給目前的 SMPS 實(shí)際開關(guān)頻率設(shè)置了上限。

設(shè)計(jì)人員可以借助寬帶隙半導(dǎo)體來(lái)打破這一上限。其中,GaN 是目前用于該應(yīng)用的最成熟、最便利的技術(shù),而 eGaN 是 GaN 的改良版。

比較硅與 GaN

與硅相比,GaN 具有多種優(yōu)勢(shì),其中幾種優(yōu)勢(shì)與該材料的電子遷移率較高有關(guān)。電子遷移率較高使半導(dǎo)體擊穿電壓更高(高于 600 伏),“電流密度”(安培/平方厘米(A/cm2))更大。GaN 的另一個(gè)優(yōu)勢(shì)在于采用該材料制成的晶體管不會(huì)出現(xiàn)反向恢復(fù)電荷,而這種現(xiàn)象可能會(huì)引起很大的開關(guān)過沖電流(瞬時(shí)振蕩)。

雖然這些特性對(duì)于電源設(shè)計(jì)人員來(lái)說很重要,但或許更重要的是,高電子遷移率使 GaN 晶體管的關(guān)斷時(shí)間大約只有硅 MOSFET 的四分之一。此外,在給定開關(guān)頻率和電流的情況下,每次開通閉合時(shí),GaN 器件的功耗約為硅晶體管的 10% 至 30%。因此,與硅 MOSFET、IGBT 或碳化硅 (SiC) 器件相比,GaN 高電子遷移率晶體管 (HEMT) 的驅(qū)動(dòng)頻率更高(圖 1)。

GaN HEMT 可實(shí)現(xiàn)更高頻率開關(guān)模式電源示意圖

圖 1:與硅或 SiC 器件相比,GaN HEMT 可實(shí)現(xiàn)更高頻率開關(guān)模式電源。(圖片來(lái)源:Infineon

基于兩個(gè)關(guān)鍵原因,GaN HEMT 的普及速度比較緩慢。首先,這種器件實(shí)質(zhì)上是耗盡型場(chǎng)效應(yīng)晶體管 (FET),即“常開”型。相反,硅 MOSFET 是增強(qiáng)型場(chǎng)效應(yīng)晶體管,即“常閉”型。因此,GaN HEMT 必須額外設(shè)計(jì)經(jīng)仔細(xì)調(diào)校的偏置電路才能正常工作。其次,這種晶體管在制造工藝方面與硅所采用的成熟、大批量技術(shù)不同,這使它們更為昂貴。設(shè)計(jì)復(fù)雜且成本過高使 GaN HEMT 應(yīng)用局限于高端 SMPS。

但最近,eGaN HEMT 已經(jīng)商業(yè)化,不再需要偏置電路。而且,芯片供應(yīng)商已推出基于 eGaN HEMT 的集成式電源 IC 驅(qū)動(dòng)器,簡(jiǎn)化了設(shè)計(jì)。此外,生產(chǎn)水平的提高也降低了 eGaN 器件的成本。

集成式 GaN 解決方案

以前,在使用 eGaN HEMT 的高端 SMPS 設(shè)計(jì)中,由于價(jià)格高昂,設(shè)計(jì)人員只能將這些器件用作功率晶體管,而柵極驅(qū)動(dòng)器則還是使用硅 MOSFET。雖然與“全硅”設(shè)計(jì)相比實(shí)現(xiàn)了部分性能的提升,但組合設(shè)計(jì)中的硅元件仍然影響了最大開關(guān)頻率。此外,由于 GaN 和硅使用的工藝技術(shù)不同,柵極驅(qū)動(dòng)器和功率晶體管必須作為單獨(dú)的元器件制造,因而增加了成本和印刷電路板尺寸。

eGaN 價(jià)格降低使芯片制造商能夠解決這兩個(gè)問題。例如,Texas Instruments 在其LMG3411R070的集成柵極驅(qū)動(dòng)中集成了 70 毫歐姆 (mΩ)、600 伏 eGaN 功率級(jí)(圖 2)。

Texas Instruments 的 LMG3411R070 示意圖

圖 2:Texas Instruments 的 LMG3411R070 在其驅(qū)動(dòng)器中集成了一個(gè) 70 mΩ、600 V 的 eGaN 功率級(jí)。(圖片來(lái)源:Texas Instruments)

該芯片的壓擺率可達(dá) 100 伏/納秒 (ns) 且瞬時(shí)振蕩近乎為零(圖 3)。相比之下,傳統(tǒng)硅功率 MOSFET 的壓擺率典型值為 3 至 10 V/ns。

TI 的 LMG3411R070 集成式 eGaN 功率級(jí)示意圖

圖 3:TI 的 LMG3411R070 集成式 eGaN 功率級(jí)表明,相比 MOSFET,eGaN 功率晶體管可以在瞬時(shí)振蕩最小的情況下實(shí)現(xiàn)更高的壓擺率。(圖片來(lái)源:Texas Instruments)

Navitas Semiconductor 制造了類似產(chǎn)品NV6113。該產(chǎn)品在 5 x 6 毫米 (mm) QFN 封裝中集成了 300 mΩ、650 V 的 eGaN HEMT、柵極驅(qū)動(dòng)器和相關(guān)邏輯電路。NV6113 的壓擺率可達(dá) 200 V/ns,工作頻率高達(dá) 2 兆赫茲 (MHz)。

TI 和 Navitas 的 GaN 功率級(jí)等器件可并行部署,用于常見的半橋拓?fù)浣Y(jié)構(gòu)(圖 4),同時(shí)還有一些產(chǎn)品在同一芯片上集成了兩個(gè)功率晶體管(及對(duì)應(yīng)的柵極驅(qū)動(dòng)器)。

Navitas NV6113 示意圖

圖 4:如圖所示,Navitas 的 NV6113 可并行部署,用于半橋拓?fù)浣Y(jié)構(gòu)。(圖片來(lái)源:Navitas Semiconductor)

例如,EPC 最近推出了EPC2115,這款集成驅(qū)動(dòng)器 IC,包含兩個(gè) 88 mΩ、150 V 的單片式 eGaN 功率晶體管,各配一個(gè)優(yōu)化型柵極驅(qū)動(dòng)器(圖 5)。EPC2115 采用低電感 2.9 x 1.1 mm BGA 封裝,最高可在 7 MHz 下運(yùn)行。

EPC 的 eGaN 集成驅(qū)動(dòng)器 IC 示意圖

圖 5:EPC 的 eGaN 集成驅(qū)動(dòng)器 IC 包含兩個(gè)功率晶體管,各配有相應(yīng)的優(yōu)化型柵極驅(qū)動(dòng)器。(圖片來(lái)源:EPC)

一般情況下,使用 eGaN HEMT 設(shè)計(jì)電源與使用硅 MOSFET 設(shè)計(jì)遵循相同的原理,但是工作頻率更高會(huì)影響外設(shè)元器件的選擇。

外設(shè)元器件的選擇

為了說明頻率對(duì)元器件選擇的影響,請(qǐng)考慮為實(shí)現(xiàn)簡(jiǎn)單的 DC-DC SMPS 降低電壓(“降壓”)拓?fù)洌绾芜x擇輸入電容器

輸入電容器可降低輸入電壓紋波幅度,進(jìn)而抑制紋波電流,使其達(dá)到可由相對(duì)便宜的大容量電容器處理的水平,且不會(huì)產(chǎn)生過大的功率耗散。若要將大容量電容器的電流保持在可接受限值范圍內(nèi),根據(jù)經(jīng)驗(yàn),最好是將峰-峰電壓紋波幅度降低到 75 毫伏 (mV) 以下。輸入電容器通常是陶瓷器件,因?yàn)樗鼈冎恍铇O小的等效串聯(lián)電阻 (ESR) 就能有效降低紋波電壓。

若要確定將峰-峰值電壓紋波幅度降低到既定幅度所需的陶瓷輸入電容器的電容值,可以使用公式 1:

公式 1

其中:

  • CMIN是所需陶瓷輸入電容器的最小電容(以微法 (μF) 為單位)
  • fSW是開關(guān)頻率(以 kHz 為單位)
  • VP(max)是允許的最大峰-峰紋波電壓
  • IOUT是穩(wěn)態(tài)輸出負(fù)載電流
  • dc 是占空比(如上所述)
  • (引自參考文獻(xiàn) 1)

對(duì)于高端硅功率級(jí),使用一些工作典型值計(jì)算可得出:

  • VIN= 12 V
  • VOUT= 3.3 V
  • IOUT= 10 A
  • η = 93%
  • fSW= 300 kHz
  • dc = 0.296
  • VP(max)= 75 mV

求得 CMIN= 92 μF

對(duì)效率略有提高而其他工作條件類似的 eGaN 功率級(jí)(如工作頻率為 2 MHz 的 Navitas 器件)重復(fù)以上計(jì)算可得出:

  • VIN= 12 V
  • VOUT= 3.3 V
  • IOUT= 10 A
  • η = 95%
  • fSW= 2000 kHz
  • dc = 0.289
  • VP(max)= 75 mV

求得 CMIN= 13 μF

CMIN減小,因而可以使用較小元器件。

盡管 eGaN HEMT 的快速關(guān)斷通常很有優(yōu)勢(shì),但也帶來(lái)了一些獨(dú)特的設(shè)計(jì)挑戰(zhàn)。其中最重要的就是造成過高的壓擺率。

控制壓擺率

較高的壓擺率 (dV/dt) 可能會(huì)引起以下問題:

  • 增加開關(guān)損耗
  • 輻射和傳導(dǎo) EMI
  • 在與開關(guān)節(jié)點(diǎn)耦合的電路中,對(duì)其他器件造成干擾
  • 由于電源回路的電感和其他寄生元件,造成了開關(guān)節(jié)點(diǎn)的電壓過沖和瞬時(shí)振蕩

這些問題在啟動(dòng)或硬開關(guān)條件下最為明顯。

使用 Navitas 產(chǎn)品時(shí),一種簡(jiǎn)單的解決方案是通過在 CVDD電容器與 VDD引腳之間添加電阻器來(lái)控制導(dǎo)通時(shí)的壓擺率(同樣見圖 4)。該電阻器 (RDD) 的大小決定了集成式柵極驅(qū)動(dòng)器的導(dǎo)通電流和功率 FET 漏極的導(dǎo)通(下降)沿壓擺率(圖 6)。

Navitas Semiconductor 的 NV6113 導(dǎo)通電流示意圖

圖 6:RDD電阻器的大小決定了 NV6113 導(dǎo)通電流和功率 FET 漏極的導(dǎo)通(下降)沿壓擺率。(圖片來(lái)源:Navitas Semiconductor)

只需將電阻器 (RDRV) 連接到功率晶體管源極,LMG3411 也支持壓擺率調(diào)節(jié)(同樣見圖 2)。選擇電阻器可將漏極電壓的壓擺率控制在大約 25 至 100 V/ns 之間。

壓擺率的選擇最終是一種權(quán)衡。開關(guān)速度更快,導(dǎo)致同時(shí)(且低效地)產(chǎn)生的大電流持續(xù)時(shí)間縮短,因此可降低功率損耗,但其他性能指標(biāo)也隨之降低。根據(jù)經(jīng)驗(yàn),最好是在確保 EMI、過沖和瞬時(shí)振蕩在規(guī)定范圍內(nèi)的前提下,實(shí)現(xiàn)最快的開關(guān)速度。

第二個(gè)設(shè)計(jì)挑戰(zhàn)是因高頻工作引起過流事件的風(fēng)險(xiǎn)。

過流保護(hù)的重要性

設(shè)計(jì)具有更高開關(guān)頻率 SMPS 的關(guān)鍵優(yōu)勢(shì)是縮小無(wú)源元器件的尺寸,進(jìn)而增大整體功率密度。但缺點(diǎn)在于在發(fā)生過流事件時(shí),高功率密度會(huì)增大受損的可能性。過流事件是 SMPS 經(jīng)常存在的風(fēng)險(xiǎn)。此外,由于電源印刷電路板印制線的外部寄生電感,過高尖峰電流可能導(dǎo)致誤觸發(fā)。

雖然快速過流保護(hù) (OCP) 對(duì)于使用傳統(tǒng) MOSFET 的 SMPS 來(lái)說很重要,但對(duì)于 eGaN HEMT 來(lái)說卻更為重要,因?yàn)椋?/p>

  • 在阻斷電壓和導(dǎo)通電阻相同的情況下,eGaN HEMT 的尺寸要小得多,因此在過流時(shí)就更難散熱;
  • eGaN HEMT 在線性區(qū)域內(nèi)工作時(shí),就必須檢測(cè)出過流,否則器件會(huì)迅速進(jìn)入飽和狀態(tài),從而導(dǎo)致功率耗散過大和器件受損。

一種傳統(tǒng)的 OCP 方法是使用電流互感器、分流電阻器或去飽和檢測(cè)電路(如下表)。然而,這會(huì)增大電源回路的寄生電感和電阻,反而需要降低壓擺率,且導(dǎo)致功率耗散升高,從而對(duì)系統(tǒng)性能產(chǎn)生不利影響。此外,互感器或分流電阻器等分立器件會(huì)增加成本,占用電路板空間。

另一種 OCP 方法是使用電流檢測(cè)元件、電平位移器(將信號(hào)發(fā)送給控制器)和檢測(cè)電路來(lái)檢測(cè) GaN FET 的漏源電壓 (VDS)。這種方法的優(yōu)勢(shì)在于不產(chǎn)生寄生電感和電阻,故不會(huì)影響電路性能,但精度不佳,主要是因?yàn)?GaN 的溫度系數(shù)較大。

第三種方法是選擇集成了 OCP 功能的集成式 eGaN 功率級(jí)。這克服了上述兩種方法的缺點(diǎn)。TI 的 LMG3411 就是一款具備此功能的產(chǎn)品。若檢測(cè)到過流,LMG3411 的保護(hù)電路可在 100 ns 內(nèi)關(guān)斷 eGaN HEMT。若下一個(gè)周期時(shí),PWM 輸入恢復(fù)為低電平,則輸出故障信號(hào)便會(huì)清除。這樣,下一個(gè)周期時(shí) eGaN HEMT 就能正常導(dǎo)通,從而最大限度地減少輸出中斷。

OCP 方法 OCP 性能 系統(tǒng)影響 所需元器件 尺寸/成本
分流電阻器 + 低容差電阻器可提供良好的精度 - 電源回路電感值高,功率損耗大 - 檢測(cè)電阻、檢測(cè)電路、電平位移器 - 中/中
電流互感器 + 0.1% 線性度 - 電源回路電感值高,占空比高時(shí)無(wú)保護(hù)作用 - 電流互感器、檢測(cè)電路 - 大/高
VDS 檢測(cè) - FET 的工藝變化,RDSON溫度系數(shù)大 + 無(wú) - 檢測(cè)電路、電平位移器 - 中/中
集成 OCP + 響應(yīng)時(shí)間小于 100 ns + 無(wú) - 電平位移器 + 無(wú)需外部元器件

表:GaN HEMT 功率級(jí)的 OCP 方法選擇匯總。對(duì)于不熟悉該技術(shù)的設(shè)計(jì)人員來(lái)說,選擇集成 OCP 的功率級(jí)是最簡(jiǎn)單的解決方案。(圖片來(lái)源:Texas Instruments)

總結(jié)

隨著太陽(yáng)能逆變器和服務(wù)器農(nóng)場(chǎng)等應(yīng)用對(duì)高能量密度 SMPS 的需求不斷增長(zhǎng),加之每個(gè)器件成本的降低,eGaN HEMT 成為更多電源設(shè)計(jì)的有吸引力選擇。雖然使用 eGaN HEMT 進(jìn)行設(shè)計(jì)可能非常棘手,但隨著集成了柵極驅(qū)動(dòng)器和功率晶體管的 eGaN HEMT 功率級(jí)的推出,SMPS 設(shè)計(jì)人員能更輕松地將該技術(shù)融入下一個(gè)高功率密度設(shè)計(jì)之中。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • eGaN
    +關(guān)注

    關(guān)注

    0

    文章

    4

    瀏覽量

    7224
  • 高能量密度電源
    +關(guān)注

    關(guān)注

    0

    文章

    2

    瀏覽量

    1336
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    超級(jí)電容在LED燈具中的作用

    超級(jí)電容(Supercapacitor),也被稱為電化學(xué)電容器,是一種介于傳統(tǒng)電容器與電池之間的新型儲(chǔ)能裝置,具有高能量密度和高功率密度特性。
    的頭像 發(fā)表于 12-13 11:30 ?209次閱讀
    超級(jí)電容在LED燈具中的作用

    超級(jí)電容在LED燈具中的作用

    超級(jí)電容(Supercapacitor),也被稱為電化學(xué)電容器,是一種介于傳統(tǒng)電容器與電池之間的新型儲(chǔ)能裝置,具有高能量密度和高功率密度特性。
    的頭像 發(fā)表于 12-13 10:34 ?279次閱讀
    超級(jí)電容在LED燈具中的作用

    欣界能源發(fā)布全球首創(chuàng)480Wh/kg高能量鋰金屬固態(tài)電池

    高能量鋰金屬固態(tài)電池。該電池采用了公司自主研發(fā)的界面處理技術(shù)和固態(tài)電解質(zhì)配方,成功將單體能量密度提升至480Wh/kg,這一數(shù)據(jù)較傳統(tǒng)電池性能提升了一倍以上,無(wú)疑刷新了行業(yè)記錄。 作為新能源領(lǐng)域的一次重要?jiǎng)?chuàng)新,“獵鷹”電
    的頭像 發(fā)表于 11-22 13:37 ?353次閱讀

    上海光機(jī)所提出強(qiáng)激光產(chǎn)生高能量子渦旋態(tài)電子新方法

    近期,中國(guó)科學(xué)院上海光學(xué)精密機(jī)械研究所強(qiáng)場(chǎng)激光物理國(guó)家重點(diǎn)實(shí)驗(yàn)室研究團(tuán)隊(duì)發(fā)展了包括軌道角動(dòng)量量子數(shù)的QED散射理論,并提出強(qiáng)激光產(chǎn)生高能量子渦旋態(tài)電子的新方法。相關(guān)成果以“Generation
    的頭像 發(fā)表于 10-23 10:41 ?203次閱讀
    上海光機(jī)所提出強(qiáng)激光產(chǎn)生<b class='flag-5'>高能量</b>子渦旋態(tài)電子新方法

    Bourns 推出兩款大電流氣體放電管 (GDT) 新品,擴(kuò)展其高能量 GDT 系列,適用于交流和直流電源設(shè)計(jì)

    解決方案電子組件領(lǐng)導(dǎo)制造供貨商,發(fā)布今日宣布在其高能量氣體放電管 (GDT) 系列中新增兩款大電流雙電極氣體放電管系列。Bourns? GDT225EX 和 GDT230E 系列專為交流和直流電源
    發(fā)表于 10-17 14:24 ?525次閱讀
    Bourns 推出兩款大電流氣體放電管 (GDT) 新品,擴(kuò)展其<b class='flag-5'>高能量</b> GDT 系列,適用于交流和直流<b class='flag-5'>電源</b>設(shè)計(jì)

    淺談電動(dòng)汽車火災(zāi)特點(diǎn)及撲救對(duì)策研究

    0引言 ? 電動(dòng)汽車火災(zāi)事件增多,其特點(diǎn)包括電池高能量密度、快速熱釋放和煙霧毒性。本文提出應(yīng)對(duì)策略:加強(qiáng)火災(zāi)預(yù)防,完善電池管理系統(tǒng),提高電池安全性能;使用干粉滅火器、氣溶膠滅火系統(tǒng)等滅火劑;對(duì)嚴(yán)重
    的頭像 發(fā)表于 09-13 15:44 ?469次閱讀
    淺談電動(dòng)汽車火災(zāi)特點(diǎn)及撲救對(duì)策研究

    中國(guó)科大開發(fā)出高能量密度、長(zhǎng)循環(huán)壽命的“火星電池”

    行業(yè)資訊
    北京中科同志科技股份有限公司
    發(fā)布于 :2024年08月28日 09:27:02

    三星CL22B系列大容量電容:滿足高能量存儲(chǔ)需求

    三星CL22B系列大容量電容,盡管具體的產(chǎn)品細(xì)節(jié)和技術(shù)規(guī)格可能因市場(chǎng)發(fā)布和產(chǎn)品線更新而有所變化,但一般來(lái)說,這類大容量電容往往被設(shè)計(jì)來(lái)滿足對(duì)高能量存儲(chǔ)和穩(wěn)定電力供應(yīng)有嚴(yán)格要求的應(yīng)用場(chǎng)景。以下是一些
    的頭像 發(fā)表于 07-26 14:10 ?356次閱讀
    三星CL22B系列大容量電容:滿足<b class='flag-5'>高能量</b>存儲(chǔ)需求

    什么是能量密度?鋰離子電池的能量密度分別是多少?

    能量密度是描述儲(chǔ)能設(shè)備存儲(chǔ)能量能力的一個(gè)物理量,它表示單位質(zhì)量或單位體積內(nèi)所能儲(chǔ)存的能量大小。
    的頭像 發(fā)表于 04-25 17:11 ?8043次閱讀

    韓國(guó)研發(fā)出快速充電的高能量、高功率混合鈉離子電池

    近期,韓國(guó)高等科學(xué)技術(shù)研究所(KAIST),Kang Jeung Ku教授領(lǐng)銜的科研小組取得關(guān)鍵性突破,成功研制出一款具有高速充電能力的高能量、高功率混合鈉離子電池,僅需數(shù)秒即可完成充電過程。
    的頭像 發(fā)表于 04-22 10:29 ?688次閱讀

    寧德時(shí)代天恒儲(chǔ)能系統(tǒng)重磅發(fā)布

    天恒儲(chǔ)能系統(tǒng)在標(biāo)準(zhǔn)20尺集裝箱內(nèi),實(shí)現(xiàn)6.25兆瓦時(shí)級(jí)高能量,單位面積能量密度提升30%,整站占地面積減少20%,于方寸之間實(shí)現(xiàn)能量
    的頭像 發(fā)表于 04-10 10:28 ?892次閱讀
    寧德時(shí)代天恒儲(chǔ)能系統(tǒng)重磅發(fā)布

    通過Mg誘導(dǎo)的元素分離構(gòu)建封閉納米孔結(jié)構(gòu),降低微米級(jí)SiOx的體積膨脹

    硅基陽(yáng)極材料由于其高比容量而備受關(guān)注,但其在鋰化過程中固有的巨大體積膨脹阻礙了其在高能量密度電池中的應(yīng)用。
    的頭像 發(fā)表于 04-09 09:13 ?659次閱讀
    通過Mg誘導(dǎo)的元素分離<b class='flag-5'>構(gòu)建</b>封閉納米孔結(jié)構(gòu),降低微米<b class='flag-5'>級(jí)</b>SiOx的體積膨脹

    高能吸收碳復(fù)合電阻器的技術(shù)規(guī)格書參考

    加熱等應(yīng)用場(chǎng)合。 實(shí)心陶瓷功率電阻的特點(diǎn):1. 由粉狀的電阻材料混合燒結(jié)而成,通體導(dǎo)電; 2. 瞬間可吸收高能量,耐高壓,無(wú)寄生電感; 3. 高可靠性,不會(huì)發(fā)生線繞電阻斷線的風(fēng)險(xiǎn); 4. 小體積,節(jié)省
    發(fā)表于 03-22 07:59

    具有增容和快充能力的Nb?O?分級(jí)微米花結(jié)構(gòu)用于柔性鈉離子微型電容器

    鈉離子微型電容器結(jié)合了鈉離子電池材料的高能量密度和超級(jí)電容器材料快速充放電的優(yōu)點(diǎn),可同時(shí)實(shí)現(xiàn)高能量密度和高功率密度,有效地彌合鈉離子電池與超
    的頭像 發(fā)表于 03-17 10:54 ?1080次閱讀
    具有增容和快充能力的Nb?O?分級(jí)微米花結(jié)構(gòu)用于柔性鈉離子微型電容器

    級(jí)PFC和交錯(cuò)PFC介紹

    級(jí)PFC(Power Factor Correction)和交錯(cuò)PFC是電源設(shè)計(jì)中用于提高能效和減少諧波污染的兩種不同技術(shù)。它們都是用來(lái)改善功率
    的頭像 發(fā)表于 02-23 15:05 ?4906次閱讀
    單<b class='flag-5'>級(jí)</b>PFC和交錯(cuò)<b class='flag-5'>式</b>PFC介紹
    主站蜘蛛池模板: ccc36色小姐电影 | 日本zljzljzlj精品 | 麻豆天美国产一区在线播放 | 色偷偷爱偷偷要 | 四虎影视国产精品亚洲精品hd | 国产成人在线视频网站 | 精品日韩欧美一区二区三区 | 老师掀开短裙让我挺进动态 | 国产成人精品视频频 | 欧美成人中文字幕在线视频 | 四房播播最新地址 | 日韩午夜中文字幕电影 | 日本一二三区视频在线 | 成人免费视频在 | 色偷偷91综合久久噜噜 | 久久水蜜桃亚洲AV无码精品偷窥 | 色吧.com| 99免费在线观看视频 | 少爷被多个暗卫肉高h | 亚洲中文久久久久久国产精品 | 中文字幕爆乳JULIA女教师 | 美女脱了内裤张开腿让男人桶到爽 | 123超碰在线视频 | 亚洲精品在线免费 | 东京热无码中文字幕av专区 | 最美白虎逼 | av天堂电影网在线观看 | 精品国产在线亚洲欧美 | 国产午夜a理论毛片在线影院 | 国色天香视频在线社区 | 国产精品卡1卡2卡三卡四 | 久久久久99精品成人片三人毛片 | 无羞耻肉动漫在线观看 | 爽爽影院线观看免费 | 张开腿我尝尝你的草莓 | 999久久久无码国产精蜜柚 | 亚洲高清一区二区三区电影 | 精品国产原创在线观看视频 | 97人妻久久久精品系列A片 | 蜜桃视频无码区在线观看 | 暖暖免费 高清 日本社区中文 |