- 半導體材料的發展史及材料性能分析
20世紀50年代,為了改善晶體管特性,提高其穩定性,半導體材料的制備技術得到了迅速發展。盡管硅在微電子技術應用方面取得了巨大成功,但是硅材料由于受間接帶隙的制約,在硅基發光器件的研究方面進展緩慢。
隨著半導體超晶體格概念的提出,以及分子束外延。金屬有機氣相外延和化學束外延等先進外延生長技術的進步,成功的生長出一系列的晶態、非晶態薄層、超薄層微結構材料,這不僅推動了半導體物理和半導體器件設計與制造從過去的所謂“雜質工程”發展到“能帶工程”為基于量子效應的新一代器件制造與應用打下了基礎。
元素半導體
第一代半導體是“元素半導體”,典型如硅基和鍺基半導體。其中以硅基半導體技術較成熟,應用也較廣,一般用硅基半導體來代替元素半導體的名稱。甚至于,目前,全球95%以上的半導體芯片和器件是用硅片作為基礎功能材料而生產出來的。
以硅材料為代表的第一代半導體材料,它取代了笨重的電子管,導致了以集成電路為核心的微電子工業的發展和整個IT 產業的飛躍,廣泛應用于信息處理和自動控制等領域。
但是在20世紀50年代,卻鍺在半導體中占主導地位,主要應用于低壓、低頻、中功率晶體管以及光電探測器中,但是鍺基半導體器件的耐高溫和抗輻射性能較差,到60年代后期逐漸被硅基器件取代。用硅材料制造的半導體器件,耐高溫和抗輻射性能較好。
1960年出現了0.75寸(約20mm)的單晶硅片。
1965年以分立器件為主的晶體管,開始使用少量的1.25英寸小硅片。之后經過2寸、3寸的發展,1975年4寸單晶硅片開始在全球市場上普及,接下來是5寸、6寸、8寸,2001年開始投入使用12寸硅片,預計在2020年,18寸(450mm)的硅片開始投入使用。
據了解,硅片占整個半導體材料市場的32%左右,行業市場空間約76億美元。國內半導體硅片市場規模為130億人民幣左右,占國內半導體制造材料總規模比重達42.5%。
而這一領域主要由日本廠商壟斷,我國6英寸硅片國產化率為50%,8英寸硅片國產化率為10%,12英寸硅片完全依賴于進口。
目前市場上在使用的硅片有 200mm(8 英寸)、300mm(12 英寸)硅片。由于晶圓面積越大,在同一晶圓上可生產的集成電路IC越多,成本越低,硅片的發展趨勢也是大尺寸化。12英寸硅片主要用于生產90nm-28nm及以下特征尺寸(16nm和14nm)的存儲器、數字電路芯片及混合信號電路芯片,是當前晶圓廠擴產的主流。
由于面臨資金和技術的雙重壓力,晶圓廠向450mm(18英寸)產線轉移的速度放緩,根據國際預測,到2020年左右,450mm的硅片開發技術才有可能實現初步量產。
化合物半導體
20世紀90年代以來,隨著移動通信的飛速發展、以光纖通信為基礎的信息高速公路和互聯網的興起,以砷化鎵(GaAs)、磷化銦(InP)為代表的第二代半導體材料開始嶄露頭腳。
第二代半導體材料是化合物半導體。化合物半導體是以砷化鎵(GaAs)、磷化銦(InP)和氮化鎵(GaN)等為代表,包括許多其它III-V族化合物半導體。這些化合物中,商業半導體器件中用得最多的是砷化鎵(GaAs)和磷砷化鎵(GaAsP),磷化銦(InP),砷鋁化鎵(GaAlAs)和磷鎵化銦(InGaP)。其中以砷化鎵技術較成熟,應用也較廣。
GaAs、InP等材料適用于制作高速、高頻、大功率以及發光電子器件,是制作高性能微波、毫米波器件及發光器件的優良材料,廣泛應用于衛星通訊、移動通訊、光通信、GPS導航等領域。但是GaAs、InP材料資源稀缺,價格昂貴,并且還有毒性,能污染環境,InP甚至被認為是可疑致癌物質,這些缺點使得第二代半導體材料的應用具有很大的局限性。
但是,化合物半導體不同於硅半導體的性質主要有二:
非常好我支持^.^
(114) 100%
不好我反對
(0) 0%
相關閱讀:
- [電子說] 金川蘭新電子半導體封裝新材料生產線項目主體封頂 2023-10-24
- [電子說] 使用半大馬士革工藝流程研究后段器件集成的工藝 2023-10-24
- [電子說] ESD介紹及TVS的原理和應用 2023-10-24
- [電子說] 怎樣延長半導體元器件的壽命呢? 2023-10-24
- [電子說] 瑞能半導體:碳化硅助力加速新能源汽車行業發展 2023-10-24
- [電子說] 氮化鎵充電器如何變得更快更強 2023-10-24
- [制造/封裝] 晶圓鍵合的種類和應用 2023-10-24
- [制造/封裝] 什么是引線鍵合?引線鍵合的演變 2023-10-24
( 發表人:郭婷 )