四、色彩傳感器的工作原理
色彩傳感器分為三種不同類型:光到光電流轉換,光到模擬電壓轉換,光到數字轉換。前者通常只代表實際色彩傳感器的輸入部分,因為原始光電流的幅度非常低,總是要求放大,以將光電流轉換成可用的水平。所以,最實用的模擬輸出色彩傳感器至少會有一個跨阻抗放大器,并提供電壓輸出。
光到模擬電壓色彩傳感器由色彩濾波器后面的光電二極管陣列與整合的電流到電壓轉換電路(通常是跨阻抗放大器)組成,如圖1.2所示。落在每個光電二極管上的光轉換成光電流,其幅度取決于亮度及入射光的波長(由于色彩濾波器)。
圖1.2: 采用光到模擬電壓轉換的色彩傳感器
如果沒有色彩濾波器,典型的硅光電二極管會對從超紫色區域直到可視區域的波長作出響應,在光譜接近紅外線的部分,峰值響應區域位于800nm和950nm之間。紅色、綠色和藍色透射色彩濾波器將重塑和優化光電二極管的光譜響應。正確設計的濾波器將對模仿人眼的濾波后的光電二極管陣列提供光譜響應。三個光電二極管中的每個光電二極管的光電流會使用電流到電壓轉換器,轉換成VRout、VGout和VBout。
有兩種色彩傳感模式:反射傳感和透射傳感。
反射傳感
在反射傳感中,色彩傳感器檢測從某個表面或對象反射的光,光源和色彩傳感器都放在目標表面附近。來自光源(如白熾燈或熒光燈、白色LED或校準后的RGBLED模塊)的光彈跳離開表面,被色彩傳感器測得。反射離開表面的色彩與表面的顏色有關。例如,白光入射到紅色表面上,會反射為紅色。反射的紅光撞擊色彩傳感器,產生R,G和B輸出電壓。通過解釋三個電壓,可以確定色彩。由于三個輸出電壓與反射光的密度線性提高,因此色彩傳感器還可以測量表面或物體的反射系數。
圖1.3:反射的光的顏色取決于表面反射的顏色和吸收的顏色。
透射傳感
在透射工作模式下,傳感器朝向光源。色彩傳感器搭配濾波器的光電二極管陣列將入射光轉換成R,G和B光電流,然后放大并轉換成模擬電壓。由于所有三個輸出都會隨著光密度提高而線性提高,因此傳感器可以同時測量光的顏色和總密度。
可以使用透射傳感,確定透明介質的顏色,如玻璃和透明塑料、液體和氣體。在這種應用中,光穿過透明介質,然后撞擊在色彩傳感器上。透明介質的顏色取決于對色彩傳感器電壓的理解。
圖1.4:傳感器的R,G和B輸出取決于落在傳感器上的光的顏色。
圖1.5:透明介質的色彩傳感,如色彩濾波器、液體或氣體。
五、如何正確選擇顏色傳感器
正如我們所見到的那樣,顏色傳感器有若干種規格和不同的性能,要選擇正確的傳感器必須通過了解以下幾方面問題來分析你的應用:
1、應用的目的?
2、現有電源類型如何?交流還是直流?額定電壓多少?
3、檢測系統要控制什么設備?傳輸機還是檢驗系統?
4、輸出負載是什么?
5、要求系統的工作速度如何?以每分鐘通過多少部件或傳送帶的速度描述。
6、傳感器可安裝點與目標的距離如何?
7、環境如何?包括清潔、多塵、熱、冷等各方面情況。
8、有多少房間能把傳感器安裝在現場?
9、有費用限制嗎?
10、目標物體的尺寸和形狀如何?
11、目標表面如何?例如,有光澤的或散射的。
12、在檢測現場,目標物體背后的背景顏色如何?
13、背景距離目標物體有多遠?