色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

您好,歡迎來電子發燒友網! ,新用戶?[免費注冊]

您的位置:電子發燒友網>電子元器件>發光二極管>

Protect LED driver in backlit displays

2011年02月02日 12:22 電子發燒友網 作者:大毛 用戶評論(0

Several circuit ideas are presented for protecting a boost-converter LED driver when the LEDs are disconnected. (Without protection, the driver output can destroy the external MOSFET and Schottky diode.) An LED-driver IC (MAX1698) and comparator (MAX9060 or MAX9028) are included.

LEDs often serve as the light source in a backlighted display, and they usually operate with a low battery voltage such as that produced by two NiCd cells or one lithium-ion cell. An IC (MAX1698/MAX1698A) can simplify these applications by boosting the battery voltage to a level suitable for LEDs. The chip also regulates LED current, and includes brightness-control circuitry for dimming the LEDs. The LED array and IC should always remain connected (Figure 1).

Figure 1. This schematic illustrates the application of a typical LED-backlight driver.
Figure 1. This schematic illustrates the application of a typical LED-backlight driver.

If you disconnect the LED array from the IC, the loss of LED current in RFB allows the voltage at FB (pin 6) to drop below the internal current-controller threshold, causing the device to begin increasing its output voltage. Unfortunately, the MAX1698 (like many similar devices) cannot sense the disconnected-LED condition, so its output voltage increases to a level that can destroy the external MOSFET and Schottky diode. This problem is present for any boost converter; not just LED drivers.

The simplest solution is a zener diode connected across the LEDs (Figure 2). A 16V zener works fine in this case (the four white LEDs drop about 12V), but it must be capable of dissipating power. When the LEDs are drawing 100mA or more and someone disconnects them, the zener must dissipate ~1/6W. A possible alternative to this circuit is shown in Figure 3.

Figure 2. The simplest protection for the Figure 1 circuit adds just a zener diode.
Figure 2. The simplest protection for the Figure 1 circuit adds just a zener diode.

Figure 3. Adding a zener diode and transistor to the Figure 1 circuit provides low-power protection for the MOSFET and Schottky diode.
Figure 3. Adding a zener diode and transistor to the Figure 1 circuit provides low-power protection for the MOSFET and Schottky diode.

It requires the addition of two resistors and one transistor, but the Figure 3 circuit doesn't dissipate extra power when the LEDs are disconnected. It also saves space—the zener can be a 0.5W device, and the resistor and BJT can be standard low-power devices available in small packages like the SOT23-3, or smaller. The circuit senses output voltage at the MOSFET drain, and deactivates the driver (MAX1698) by controlling its Shutdown input. You can choose a zener voltage that ensures this voltage is within the MOSFET's operating characteristics.

In other words, the circuit doesn't "work" except when a user removes the LED array. In that event the output voltage starts to rise, and when it reaches the zener voltage the circuit trips and shuts down the IC. As in shutdown mode, the inductor begins to discharge when the driver turns off the external MOSFET, which allows the output voltage to drop below the zener voltage and bring the driver out of shutdown. The driver re-starts, and if the LED array remains unconnected, the output voltage increases until it exceeds the zener voltage, and triggers the protection again.

Because the output voltage regulates around the zener voltage, this circuit does not generate a damaging current spike when the LED array is reconnected. To save battery energy, it also permits external control of the shutdown mode (using a microcontroller, for instance, as shown in Figure 3), to switch off the backlight array.

Another alternative is the circuit of Figure 4, which requires an additional comparator and three resistors. This approach also uses small, low-cost components and dissipates negligible power. It senses output voltage at the Schottky-diode cathode, and limits circuit operation to a voltage set by the resistor divider and the driver's VREF output (1.25V typical).

Figure 4. Better yet, this tiny comparator protects the Figure 1 circuit, dissipates little power, and requires little space on the pc board.
Figure 4. Better yet, this tiny comparator protects the Figure 1 circuit, dissipates little power, and requires little space on the pc board.

This protection circuit remains inactive until the LED array is removed, and (again) its operating voltages remain well within limits for the chosen MOSFET. The comparator should have an open-drain output (MAX9060/MAX9061 or MAX9028) to permit external control of the shutdown mode by a microcontroller—as before, to switch off the backlight array when needed.

The circuit also consumes less power, according to values selected for the resistor divider. (Its quiescent current is a few tens of microamps.) Last but not least, this circuit is smaller than the other two because the comparator comes in a tiny SOT23-5 package (MAX9060/MAX9061) or 1x1.52mm UCSP? package (MAX9028). All three circuits protect the external MOSFET and diode in an LED-backlight application, when the LED array is disconnected.

UCSP is a trademark of Maxim Integrated Products, Inc.

非常好我支持^.^

(2) 66.7%

不好我反對

(1) 33.3%

( 發表人:admin )

      發表評論

      用戶評論
      評價:好評中評差評

      發表評論,獲取積分! 請遵守相關規定!

      ?
      主站蜘蛛池模板: 综合久久伊人 | 亚洲视频一| 男人J放进女人P全黄网站 | 国产一区二区青青精品久久 | 能看的黄页最新网站 | 99精品网站 | 97国产成人精品视频 | 花蝴蝶高清影视视频在线播放 | 久操久操久操 | 99热国产这里只有精品6 | 欧美午夜精品A片一区二区HD | 香港成人社区 | 色丁香婷婷综合缴情综 | 三级网址在线观看 | 99热这里只有精品6 99热这里只有精品 99热这里只有的精品 | 中文字幕人妻无码系列第三区 | 国产午夜精品一区二区理论影院 | 国产成人午夜精品免费视频 | 最新高清无码专区在线视频 | 99RE8国产这里只有精品 | 99久久全国免费久久爱 | 性欧美video 性欧美sexovideotv | 美国VICTORY DAY在线 | 国产白浆视频在线播放 | 亚洲国产精品嫩草影院永久 | 国产精品第1页在线观看 | 久久精品中文字幕 | 麻豆沈芯语 | 国产专区青青在线视频 | 欧美午夜精品久久久久久浪潮 | 伦理 电影在线观看 | 九九九九九热 | 日本孕妇大胆孕交 | 久久免费视频在线观看6 | 色多多旧版污污破解版 | 亚洲国产成人精品无码区99 | 湖南电台在线收听 | 国产成人一区二区三区在线观看 | 无码AV动漫精品一区二区免费 | 一本道色综合手机久久 | 羞羞一区二区三区四区片 |