氣敏電阻工作時為什么要加熱
常用的主要有接觸燃燒式氣體傳感器、電化學氣敏傳感器和半導體氣敏傳感器等。接觸燃燒式氣體傳感器的檢測元件一般為鉑金屬絲(也可表面涂鉑、鈀等稀有金屬催化層),使用時對鉑絲通以電流,保持300℃~400℃的高溫,此時若與可燃性氣體接觸,可燃性氣體就會在稀有金屬催化層上燃燒,因此,鉑絲的溫度會上升,鉑絲的電阻值也上升;通過測量鉑絲的電阻值變化的大小,就知道可燃性氣體的濃度。電化學氣敏傳感器一般利用液體(或固體、有機凝膠等)電解質,其輸出形式可以是氣體 直接氧化或還原產生的電流,也可以是離子作用于離子電極產生的電動勢。半導體氣敏傳感器具有靈敏度高、響應快、穩定性好、使用簡單的特點,應用極其廣泛;半導體氣敏元件有N型和P型之分。N型在檢測時阻值隨氣體濃度的增大而減小;P型阻值隨氣體濃度的增大而增大。象SnO2金屬氧化物半導體氣敏材料,屬于 N型半導體,在200~300℃溫度它吸附空氣中的氧,形成氧的負離子吸附,使半導體中的電子密度減少,從而使其電阻值增加。當遇到有能供給電子的可燃氣 體(如CO等)時,原來吸附的氧脫附,而由可燃氣體以正離子狀態吸附在金屬氧化物半導體表面;氧脫附放出電子,可燃行氣體以正離子狀態吸附也要放出電子, 從而使氧化物半導體導帶電子密度增加,電阻值下降。可燃性氣體不存在了,金屬氧化物半導體又會自動恢復氧的負離子吸附,使電阻值升高到初始狀態。這就是半 導體氣敏元件檢測可燃氣體的基本原理。
氣敏電阻加熱方式
氣敏電阻是一種半導體敏感器件,它是利用氣體的吸附而使半導體本身的電導率發生變化這一機理來進行檢測的。人們發現某些氧化物半導體材料如SnO2、ZnO、Fe2O3、MgO、NiO、BaTiO3等都具有氣敏效應。
氣敏電阻根據加熱的方式可分為直熱式和旁熱式兩種,直熱式消耗功率大,穩定性較差,故應用逐漸減少。旁熱式性能穩定,消耗功率小,其結構上往往加有封壓雙層的不銹鋼絲網防爆,因此安全可靠,其應用面較廣。