高功率負荷
由于與銅相比,電阻材料的熱導性相對較弱,而且電阻器大多數使用厚度介于20-150μm之間的蝕刻結構的合金箔,因此不可能通過電阻材料將功耗轉化成的熱量傳導到端子中。所以Isa-Plan系列電阻采用一種很薄的、導熱性強的粘合劑來將電阻合金箔粘在一種同樣具有良好導熱性的基板上(銅或鋁)。通過這種方式可以非常有效地將熱量通過基板和端子散發到外部,最終實現相對很低的熱內阻(通常為10-30K/W)。
反過來,這種結構的電阻可以在非常高的端子溫度下滿負荷工作,也就是說功率折減點在很高的溫度下才出現;同時電阻材料的最高溫度可以維持在較低水平,這就可以有效改善電阻的長期穩定性和因溫度而引起的阻值變化。
使用復合材料的極低阻值電阻器,Manganin橫截面積及機械強度非常之大,以至于無需使用任何基板,這也就意味著電阻材料具有非常好的導熱性及相對低的熱內阻。例如對于1毫歐的電阻,熱內阻大約10K/W,對于100微歐的電阻,熱內阻甚至只有1K/W。
低電感
目前的許多應用中需要檢測和控制開關調制電流,因此分流器的寄生電感參數非常重要。表面貼裝電阻器的生產中采用特殊的低電感平面設計并選擇具有或不具有緊密相鄰的波形紋結構。上面所提到的精密合金的抗磁性,金屬底板結構以及四端子連接又進一步實現了低電感。
但是,由于電壓取樣連接線和電阻器構成了環狀的天線結構,為了避免其間因電流通過產生的磁場和外圍磁場而形成的感應電壓,需要特別強調要使電壓取樣的信號線圍成的區域越小越好,最理想的是條狀線設計。與放大器連接的兩條取樣信號線要設計得盡量靠近或者最好在PCB的不同層面之間平行布線,不合適的布局(紅線所示)的后果是,這種天線效應會遠遠加大電阻的實際電感。