當手機不斷地整合包括照相、游戲、數據、視頻等各種功能于一身時,它已搖身變成一個多媒體應用的播放平臺,可說是朝細致而微的隨身型迷你計算機發展。在定位上,這樣的手機有別于既有的純粹語音的手機(Voice phone)或具備某些功能的手機(Feature phone),而當屬于智能型手機(Smart phone)。
智能型手機除了具有較強的數據編輯管理能力,更能提供音、視頻、游戲等多媒體應用服務,也能同時處理多項工作。更進一步來看,它的功能面涵蓋了通信、信息與多媒體功能,即:
1. 通信功能:語音、訊息(messaging)、認證(Authentication)、計費(Billing)等等通信處理功能;
2. 信息功能:Email、行事歷、信息管理、Sync、安全性等信息處理功能;
3. 多媒體功能:視頻、照相、游戲、TV、串流、音樂、DRM等多媒體應用功能;
除了信息功能外,在通信與多媒體的應用上,音頻是必要的處理任務。在過去,手機只需要處理單純的語音通話信號,但今日的智能型手機中得處理的音頻任務繁重,除了多音調振鈴、MP3音樂外,可能還要有FM廣播及游戲音效,而且不能只是單聲道的效果,現在要求的是立體聲的臨場感體驗。
過去,數字音頻的世界是截然兩分的:一邊是Hi-Fi的世界,另一邊則是語音的世界。一般而言,Hi-Fi是指16bit立體聲質量、以44.1kHz取樣的音頻,也就是CD音樂的規格;電話語音則是8bit和8kHz的單聲道(mono)、低質量音頻。不過,進入智能型手機的時代,兩個音頻世界開始撞擊在一起了,如何將音頻子系統完善地與應用及通信處理平臺整合在一起,就成了便攜式設備工程師開發新產品時的關鍵性挑戰。
音頻編碼格式與接口
在進入系統架構的探討前,先來看看音頻編碼的現狀。目前音頻編碼的格式繁多,針對聲音的編碼就有PCM、ADPCM、DM、PWM、WMA、OGG、 AMR、ACC、MP3Pro以及MP3等;針對人類語音有LPC、CELP與ACELP等;其它還有MPEG-2、MPEG-4、H.264、VC-1 等視聽節目的編碼格式。
以下介紹三種常用的音頻格式:
AMR格式
AMR為自適應多碼率語音傳輸編譯碼器(Adpative Multi-Rate Speech Codec),最初版是歐洲電信標準化協會(ETSI)為GMS系統所制定的語音編譯碼標準,而因頻寬又分為兩種—AMR-NB(AMR Narrowband)和AMR-WB(AMR Wideband)。以市場最大品牌Nokia來說,其多數手機都支持上述兩種格式的音頻文件。
MP3格式
MP3是MPEG AudioLayer3的縮寫,這是一種音頻壓縮技術,其編碼具有10:1-12:1的高壓縮率,可以保持低頻部分不失真,但犧牲了音頻中12KHz -16KHz的高頻部份來降低文件大小,其“.mp3”格式文件一般只有“.wav”的10%。另外,MP3受到歡迎的一大原因,是它并非受到版權保護的技術,所以任何人都可以使用。
MP3格式壓縮音樂的取樣頻率有很多種,可以用64kbps或更低的編碼來節省空間,亦可以用到 320kbps達到極高的壓縮音質。MP3在編碼速率上,又分為"CBR"(固定編碼),與及“VBR”(可變碼率)技術,有些手機無法播放下載來的音樂,正是因為沒有支持“VBR”格式的MP3音樂。
AAC格式
AAC即高級音頻編碼(Advanced Audio Coding),它采用的運算方式是與MP3不同,AAC可以同時支持多達48個音軌、15個低頻音軌、更多種取樣率和傳輸率、具有多種言語的兼容能力,以及更高的解碼效率。總結來說,AAC可以在比MP3格式再縮小30%的條件下提供更好的音質,而且聲音保真度好,更接近原音,所以被手機界視為是最佳的音頻編碼格式。AAC是一個大家族,他們是共分為9種規格,以適應不同場合的需要:
(1) MPEG-2AAC LC 低復雜度規格 (Low Complexity)
(2) MPEG-2 AAC Main 主規格
(3) MPEG-2 AAC SSR 可變取樣率規格 (Scaleable Sample Rate)
(4) MPEG-4 AAC LC低復雜度規格(LowComplexity),現在的手機比較常見的MP4檔中的音頻部份就包括了該規格音頻文件
(5) MPEG-4AAC Main 主規格
(6) MPEG-4 AAC SSR 可變取樣率規格 (Scaleable Sample Rate)
(7) MPEG-4 AAC LTP長時期預測規格(Long Term Prediction)
(8) MPEG-4 AAC LD低延遲規格(Low Delay)
(9) MPEG-4 AAC HE高效率規格(High Efficiency
上述的規格中,主規格(Main)包含了增益控制以外的全部功能,其音質是最好,而低復雜度規格(LC)則是比較簡單,沒有了增益控制,但提高了編碼效率,至于SSR與LC規格大致相同,但是多了增益的控制功能,另外,LTP/LD/HE都是用在低碼率下的編碼,其中HE采用NeroACC編碼器支持,是近來常用的一種編碼率方式。不過一般來說,Main規格和LC規格的音質相差不大,因此考慮手機目前的內存仍有限的情況下,目前使用最多的AAC規格是 LC規格。
音頻接口是智能型手機設計者需考慮的重要議題。數字語音一般采用PCM(Pulse Code Modulation)接口,而Hi-Fi立體聲則采用串行I2S(Inter-IC Sound)接口或AC97接口。I2S是飛利浦公司為數字音頻設備之間的音頻數據傳輸而制定的一種總線標準,是目前消費性音頻產品中常用的接口;AC?7則是英特爾公司用于提升個人計算機音效、降低噪音的規格,由于在1997年制訂,因此稱為AC97。
因此,為特定應用而量身定制一套整合性的解決方案是較理想的作法。在SoC的技術趨勢下,已有一些廠商將立體聲數字模擬轉換器(DAC)或編譯碼器(CODEC)整合到特定功能的IC當中。不過,有些功能適合整合在一起,有些則可能得到反效果。
舉例來說,當廠商將電源管理和音頻處理功能整合在一起時,通常得在音質的部分做妥協,因為電源穩壓器(regulator) 所產生的噪音會干擾到附近的音頻路徑;若將音頻功能整合到數字IC中也有困難,因為對于Hi-Fi的組件來說,需要用到0.35mm的工藝來讓混合訊號處理得到最佳化效能,但目前數字邏輯方面的應用已朝0.18mm以下的更高工藝發展。以上述兩種整合性的芯片策略來說,要讓兩種不同的電路同時存在于一個芯片當中,其最終的芯片尺寸可能也會大到難以接受。
此外,揚聲器功率放大機(louDSPeaker amplifier)特別難被整合。它所產生的熱是一個問題,需要做散熱處理,因此往往需要另一顆獨立的揚聲器驅動IC。還有一個整合上的常見問題,也就是為了讓IC盡量做到最小化,可能會產生模擬輸入或輸出接腳數目不足的問題。
專屬的音頻IC可避免這些問題,而音頻整合有好幾種方法可以達成。共享ADC和DAC能減少硬件成本,但卻不能同時播放或錄制兩種音頻流格式。為個別功能安排專用的轉換器(converter)可以解決這個問題,不過,此一作法會增加芯片成本。折中的作法是只共享ADC的部分,但有獨立的DAC,這樣做的話,當電話通信在進行時,也同時可以播放其它音頻(如播放另一通電話的鈴聲,或播放音樂),但在通信時不能同時進行錄音。ADC的耗電可以通過關掉一種功能,而以較低取樣速率的方式來加以控制。因此,為特定應用而量身定制一套整合性的解決方案是較理想的作法。在SoC的技術趨勢下,已有一些廠商將立體聲數字模擬轉換器(DAC)或編譯碼器(CODEC)整合到特定功能的IC當中。不過,有些功能適合整合在一起,有些則可能得到反效果。
舉例來說,當廠商將電源管理和音頻處理功能整合在一起時,通常得在音質的部分做妥協,因為電源穩壓器(regulator) 所產生的噪音會干擾到附近的音頻路徑;若將音頻功能整合到數字IC中也有困難,因為對于Hi-Fi的組件來說,需要用到0.35mm的工藝來讓混合訊號處理得到最佳化效能,但目前數字邏輯方面的應用已朝0.18mm以下的更高工藝發展。以上述兩種整合性的芯片策略來說,要讓兩種不同的電路同時存在于一個芯片當中,其最終的芯片尺寸可能也會大到難以接受。
此外,揚聲器功率放大機(loudspeaker amplifier)特別難被整合。它所產生的熱是一個問題,需要做散熱處理,因此往往需要另一顆獨立的揚聲器驅動IC。還有一個整合上的常見問題,也就是為了讓IC盡量做到最小化,可能會產生模擬輸入或輸出接腳數目不足的問題。
專屬的音頻IC可避免這些問題,而音頻整合有好幾種方法可以達成。共享ADC和DAC能減少硬件成本,但卻不能同時播放或錄制兩種音頻流格式。為個別功能安排專用的轉換器(converter)可以解決這個問題,不過,此一作法會增加芯片成本。折中的作法是只共享ADC的部分,但有獨立的DAC,這樣做的話,當電話通信在進行時,也同時可以播放其它音頻(如播放另一通電話的鈴聲,或播放音樂),但在通信時不能同時進行錄音。ADC的耗電可以通過關掉一種功能,而以較低取樣速率的方式來加以控制。
在計算機的音頻需求上,基本上與消費性市場相似,但為了要能播放不同取樣速率(8kHz、44.1kHz、48kHz)下錄音的音樂文件,所以需要有更有效率和便宜的解決方案,而AC97就具有這樣的特性。在廣義的手持式設備市場中,三種格式各有其擁護者:CD、MD、MP3隨身聽會采用I2S接口;移動電話會采用PCM接口;具音頻功能的PDA則使用和PC一樣的AC97編碼格式。
評論
查看更多