今天我要給大家介紹的,是天線。
嗯,就是這個東東:
天線,是我們生活中很常見的一種通訊設備。但是,大部分人其實對它并不了解,可能只知道它是收發信號的。
所以,小編用一個禮拜的時間,憋了一個大招,碼出了這篇文章——
本文面向零基礎讀者,專業或非專業人士,皆可閱讀,絕對通俗易懂,干貨滿滿。
廢話不多說,直入正題!
話說,自從1894年老毛子科學家波波夫成功發明了天線之后,這玩意迄今已有124年的歷史(數了3遍,應該沒錯
)。
波波夫和他的發明
在這漫長的歷史長河之中,它對人類社會發展和進步做出了卓絕的貢獻。
二戰中屢立奇功的英國雷達天線
如今,不管是老百姓日常工作生活,還是科學家進行科研探索,都離不開天線君的默默奉獻。
天線究竟是一根什么樣的“線”,為什么會如此徹底地改變我們的生活?
其實,天線之所以牛逼,就是因為電磁波牛逼。
電磁波之所以牛逼,一個主要原因就是,它是唯一能夠不依賴任何介質進行傳播的“神秘力量”。即使在真空中,它也能來去自如,而且轉瞬即至。
電磁波效果圖
電磁波傳播示意圖
想要充分利用這股“神秘力量”,你就需要天線。
在無線電設備中,天線就是用來輻射和接收無線電波的裝置。
天線的英文名:Antenna(也有觸須、直覺之意)
再通俗點,天線就是一個“轉換器”——把傳輸線上傳播的導行波,變換成在自由空間中傳播的電磁波,或者進行相反的變換。
天線的作用
什么叫導行波?
簡單來說,導行波就是一種電線上的電磁波。
天線是怎么實現導行波和空間波之間轉換的呢?
看下圖:
中學物理學過,兩根平行導線,有交變電流時,就會形成電磁波輻射。
兩根導線很近時,輻射很微弱(導線電流方向相反,產生的感應電動勢幾乎抵消)。
兩根導線張開,輻射就會增強(導線電流方向相同,產生的感應電動勢方向相同)。
當導線的長度增大到波長的1/4時,就能形成較為的輻射效果!
有了電場,就有了磁場,有了磁場,就有了電場,如此循環,就有了電磁場和電磁波。。。
電生磁,磁生電
再來個動圖,大家感受一下這個優美的過程:
導線電流方向的變化,產生了變化的電場
產生電場的這兩根直導線,就叫做振子。
通常兩臂長度相同,所以叫對稱振子。
長度像下面這樣的,叫半波對稱振子。
半波對稱振子
把導線兩頭連起來,就變成了半波對稱折合振子。
半波對稱折合振子
有點像刷墻的油漆刷子。
對稱振子是迄今最為經典,使用最為廣泛的天線。
理論還是有點枯燥啊,趕緊的,我們來結合一下實物。
真實世界中的振子,是個什么樣?
Duang!就是這樣——
就是這么個金屬片。。。半波對稱振子(非折合)
好吧,其實上面這個只是振子的一個傳統形態,它還有N種變(身)態:
造型怪異的振子
懵逼了吧?如果說振子就是天線,那這哪里是天線嘛?我們現實生活中看到的天線不是這個鳥樣啊?
放心!作為一個百年一遇的良心公眾號,鮮棗課堂騙天騙地都不敢騙各位粉絲爸爸!
確切地說,振子不是一個完整的天線。振子是天線的核心部件,形態會隨天線的形態變化而變化。
而天線的形態,實在是太TM多了。。。多了。。。了。。。
總而言之,成百上千。。。
雖然天線的形態千奇百怪,但是根據相似度,也可以進行大致歸類。
按波長分:中波天線、短波天線、超短波天線、微波天線...
按性能分:高增益天線、中增益天線...
按指向分:全向天線、定向天線、扇區天線...
按用途分:基站天線、電視天線、雷達天線、電臺天線...
按結構分:線天線、面天線...
按系統類型分:單元天線、天線陣...
……
如果按照外型來分,常見的幾種,如下圖:
鞭狀天線
拋物面天線
八木天線
PS:八木天線并不是八根木頭,雖然我數學不好,但是八我還是數得來的。之所以叫八木,是因為它是二十世紀20年代日本人八木秀次和宇田太郞發明的,叫“八木宇田天線”,簡稱“八木天線”(可憐的宇田)。
我們通信汪最關心的,當然是——通信基站天線!
基站天線,是基站天饋系統的組成部分,也是移動通信系統的重要組成部分。
基站天線一般分為室內天線和室外天線。
室內天線通常包括全向吸頂天線和定向壁掛天線等。
我們重點說說室外的。
室外基站天線也分為全向的和定向的。定向天線再細分為定向單極化天線和定向雙極化天線。
什么是極化?別急,我們待會再說。我們先說說全向和定向。
其實顧名思義,全向天線就是向四周發射和接收信號的,而定向天線,是向指定方向。
室外全向天線,是這樣的:
就是一根棒子,有粗的,也有細的。
它里面的振子,是這樣的:
相比全向天線,現實工作生活中,定向天線使用最為廣泛。
它大部分時候看上去就是一個板子,所以叫板狀天線。
板狀天線,主要由以下部分組成:
輻射單元(振子)
反射板(底板)
功率分配網絡(饋電網絡)
封裝防護(天線罩)
之前我們看到那些奇怪形狀的振子,其實都是基站天線的振子。
大家注意到沒,這些振子的角度,有一定的規律:要么是“+”,要么是“×”。
嗯,這就是前面我們提到的“極化”。
無線電波在空間傳播時,其電場方向是按一定的規律而變化的,這種現象稱為無線電波的極化。
如果電波的電場方向垂直于地面,我們稱它為垂直極化波。同理,平行于地面,就是水平極化波。另外,還有±45°的極化。
不僅如此,電場的方向還可以是螺旋旋轉的,叫橢圓極化波。
雙極化,就是2個天線振子在一個單元內,形成兩個獨立波。
采用雙極化天線,可以在小區覆蓋時減少天線的數量,降低天線架設的條件要求,進而減少投資,還能保證覆蓋效果。總之,就是好處多多。
密集恐懼癥又犯了。。。
我們繼續前面全向和定向天線的話題。
為什么定向天線可以控制信號的輻射方向呢?
我們先來看個圖:
這種圖,叫做天線方向圖。
因為空間是三維立體的,所以這種從上往下的俯視,以及從前往后的正視,會更加清晰直觀地觀察到天線輻射強度的分布。
上圖也是一對半波對稱振子產生的天線方向圖,有點像個平放的輪胎。
話說,天線的諸多特性中,一個很重要的能力,就是輻射距離。
怎樣才能讓這個天線的輻射距離更遠呢?
答案就是——
拍它。。。
這下輻射距離不就遠了嘛。。。
問題是,輻射這玩意,看不見抓不著,你想拍它,也拍不著啊。
在天線理論里,如果你想拍這一巴掌,正確的做法是——增加振子。
振子越多,輪胎越扁。。。
這個造型有點像那啥啊。。。呵呵
好了,輪胎被拍成了餅,信號距離是遠了,而且,它是向周圍360°發散的,是個全向天線。這種天線,放在荒郊野外,是極好的。但是,在城市里,這種天線就很難玩得轉了。
城市里,人群密集,建筑林立,通常需要使用定向天線,對指定范圍進行信號覆蓋。
城區基本上都是定向天線
于是乎,我們就需要對全向天線進行“改造”。
首先,我們要想辦法把其中一側“擠一擠”:
怎么擠呢?我們加上反射板,擋在一側。然后,配合多個振子,進行“聚焦”。
最后,我們得到的輻射形狀,是這樣的:
圖中,輻射強度最大的瓣稱為主瓣,其余的瓣稱為副瓣或旁瓣,屁股上還會有一點尾巴,叫后瓣。
呃,這個造型,有點像。。。茄子??
對于這個“茄子”,你可以想一想,怎樣才能最大化利用它進行信號覆蓋呢?
抱著它站在馬路上,肯定是不行的,障礙物太多。
站得高,看得遠,我們肯定要往高處走啊。
到了高處,怎么才能往下照呢?聰明如我的你,一定想到了,很簡單啊,天線本體往下傾斜不就OK啦?
是的,在安裝時,直接傾斜天線,是一個辦法,我們稱之為“機械下傾”。
現在的天線,安裝時都具備這個能力,一個機械臂,搞定。
但是,機械下傾也存在一個問題——
采用機械下傾時,天線垂直分量和水平分量的幅值是不變的,所以天線方向圖嚴重變形 。
這肯定不行啊,影響了信號覆蓋。于是,我們采用了另外一種辦法,就是電調下傾,簡稱電下傾。
簡而言之,電下傾就是保持天線本體的物理角度不變,通過調整天線的振子相位,改變場強強度。
來個動圖,就看明白了:
相比于機械下傾,電下傾的天線方向圖變化不大,下傾度數更大,而且,前瓣和后瓣都朝下。
當然啦,在實際使用中,經常會機械下傾和電調下傾配合使用。
下傾之后,就變成了這樣——
在這種情況下,天線的主要輻射范圍,得到了較充分的利用。
但是,還是有問題存在的:
1 主瓣和下旁瓣之間,有一個下部零深,會造成這個位置的信號盲區。通常,我們稱之為“燈下黑”。
2 上旁瓣的角度較高,影響距離較遠,很容易造成越區干擾,也就是說,信號會影響到別的小區。
所以,我們必須努力填補“下部零深”的空缺,壓制“上旁瓣”的強度。
具體的辦法,就是調節旁瓣的電平,采用波束賦形等手段,里面的技術細節就有點復雜了。大家感興趣的話,可以自行搜索相關資料。
這里面的學問,真的很深,所以,無數的天線專家都在鉆研這方面的課題,不斷地研發、測試。
上圖為天線測試暗室
一款優秀的天線,離不開良好的工藝,可靠的材料,還有不斷的測試。
好啦,文章寫到這里,就該結束啦!能看到這里的,絕對都是真愛啊!
實際上,天線的知識還有很多,遠不止本文所述。限于篇幅,今天還是先到這里吧。
總之,天線確實是一門精深的學問,遠比大家想象得復雜。而且,目前也處于高速發展的階段,還有很大的潛力可以挖掘。
尤其是即將到來的5G,天線技術革新是其中的重中之重,各大設備廠家一定會在5G天線上全力以赴,做足文章。
到時候會有什么樣的天線黑科技出現?讓我們拭目以待吧!
評論
查看更多