20世紀80年代后期,3D打印機的橫空出世,開啟了增材制造新時代。近年來,借著新一輪科技革命和產業變革的東風,3D打印步入快速發展期。世界各國紛紛將其作為未來產業發展新的增長點加以培育,如2012年美國將“增材制造技術”確定為首個制造業創新中心(后更名為“美國制造”),歐盟、日本、韓國、新加坡、俄羅斯、南非、印度等國也通過各種措施推進3D打印產業發展。
我國的3D打印技術與世界先進水平基本同步,但產業化仍處于起步階段。未來,3D打印將朝著速度更快、精度更高、性能更優、質量更可靠的方向發展,成為一股強大的科技力量。
趨勢一:桌面級市場已陷入“紅海” 掘金工業級正當時
近幾年,桌面3D打印機“叫好又叫座”,銷量呈現大幅增長,而工業級3D打印機則略顯慘淡。根據大數據公司CONTEXT的數據,2015年全球桌面3D打印機銷量增長了33%,工業級3D打印機則下降了9%;2016年上半年全球桌面3D打印機同比增加15%,工業級3D打印機卻減少15%。桌面3D打印機門檻低、設計簡單,是企業進軍3D打印領域的較好入口。但經過多年的發展,桌面級市場競爭已近“白熱化”,加之利潤小、精度低、實用性不佳,天花板效應明顯。
而工業級市場契合了智能制造的理念,可廣泛運用于汽車、航空航天、機械工業、醫療等市場需求大、發展潛力大的領域,隨著技術的逐漸成熟和成本的不斷降低,將會爆發出難以想象的巨大能量。
2015年底,全球3D打印巨頭3D Systems公司宣布停產消費級桌面3D打印機,轉向更賺錢的專業級和工業級市場;2016年初,國內3D打印技術大咖西通電子在珠海宣布全面進軍工業級3D打印領域。
趨勢二:金屬3D打印領域快速發展 應用端空間漸打開
金屬3D打印被稱為“3D打印王冠上的明珠”,是門檻最高、前景最好、最前沿的技術之一。同樣來自CONTEXT發布的數據,2015年全球金屬3D打印機銷量增長了35%,2016年上半年同比增長17%,可以說是工業級3D打印領域逆勢上漲的一朵“奇葩”。在汽車制造、航空航天等高精尖領域,有些零部件形狀復雜、價格昂貴,傳統鍛鑄工藝生產不出來或損耗較大,而金屬3D打印則能快速制造出滿足要求、重量較輕的產品。
2015年11月,奧迪公司使用金屬3D打印技術按照1:2的比例制造出了Auto Union(奧迪前身)在1936年推出的C版賽車的所有金屬部件;2016年9月,GE斥資14億美元收購了瑞典Arcam公司和德國SLM Solutions集團兩大金屬3D打印巨頭,加快布局3D打印航空發動機零部件業務。此外,醫療器械、核電、造船等領域對金屬3D打印的需求也十分旺盛,應用端市場正逐漸打開。
趨勢三:3D打印產業化還需時日 “增”“減”制造長期共存
3D打印采用增材制造技術,是對以“減材制造”“等材制造”為基礎的傳統制造業的創新與挑戰,但并不是非此即彼的關系,而是并存互補的關系。
從歷史看,傳統制造業經過了幾千年的積累和發展,技術、工藝、材料等已經非常成熟,而3D打印則是一個新生事物,只有30多年的發展歷程,在速度、精度、強度等方面還有諸多限制。
從現狀看,當前3D打印市場份額十分有限,專業咨詢機構Wohlers Associates發布的數據顯示,2015年全球3D打印市場規模為51.65億美元,至2020年將達到212億美元,而這與數十萬億美元的制造業市場相比,還微乎其微。
相比傳統制造,3D打印研發周期更短、用料更省,在小批量、個性化定制等方面優勢明顯,但在大規模生產方面存在著許多不足之處。增材制造雖然不能完全替代減材制造、等材制造,但作為傳統制造技術的有益補充,3D打印將極大地推動制造業的轉型升級。
趨勢四:產品生產方式加速變革 “整”“分”制造攜手共進
3D打印是“工業4.0”時代最具發展前景的先進制造技術之一,它從兩個方面改變了產品的生產方式:一方面,傳統制造業以“全球采購、分工協作”為主要特征,產品的不同部件往往在不同的地方進行生產,再運到同一地方進行組裝。而3D打印則是“整體制造、一次成型”,省去了物流環節,節約了時間和成本。
另一方面,傳統制造業以生產線為核心、以工廠為主要載體,生產設備高度集中。而3D打印則體現了以大數據、云計算、物聯網、移動互聯網為代表的新一代信息技術與制造業的融合,生產設備分散在各地,實現了分布式制造,從而省去了倉儲環節。
“整體制造”和“分布式制造”在字義上看似矛盾,在3D打印技術上則實現了統一,前者強調生產過程,后者強調生產行為,共同推動著產品生產方式的變革。
趨勢五:成型尺寸向兩邊延伸 “大”“小”產品顛覆想象
隨著3D打印應用領域的擴展,產品成型尺寸正走向兩個極端:一方面往“大”處跨,從小飾品、鞋子、家具到建筑,尺寸不斷被刷新,特別是汽車制造、航空航天等領域對大尺寸精密構件的需求較大,如2016年珠海航展上西安鉑力特公司展示的一款3D打印航空發動機中空葉片,總高度達933毫米。
另一方面向“小”處走,可達到微米納米水平,在強度硬度不變的情況下,大大減輕產品的體積和重量,如哈佛大學和伊利諾伊大學的研究員3D打印出比沙粒還小的納米級鋰電池,其能夠提供的能量卻不少于一塊普通的手機電池。未來,3D打印的成型尺寸將不斷延伸,從大的不可思議到小的瞠目結舌,“只有想不到的,沒有做不到的”。
趨勢六:材料瓶頸待攻克 “質”“量”趨升“價”趨降
“巧婦難為無米之炊”。3D打印材料是3D打印技術發展不可或缺的物質基礎,也是當前制約3D打印產業化的關鍵因素。近年來,隨著3D打印需求的增加,3D打印材料種類得到了迅速拓展,主要包括高分子材料、金屬材料、無機非金屬材料等三大類。但與傳統材料相比,3D打印材料種類依然偏少。
以金屬3D打印為例,可用材料僅有不銹鋼、鈦合金、鋁合金等為數不多的幾種。另外,3D打印對材料的形態也有著嚴格的要求,一般為粉末狀、絲狀、液體狀等,相比普通材料價格比較昂貴,根本無法滿足個人與工業化生產的需要。足夠多“買得起”的材料才能為技術的發展提供足夠多的選擇空間、為應用的擴展提供足夠多的想象空間。
未來,3D打印材料將成為研究開發的焦點、資本涌入的風口,材料種類、形態將得到進一步拓展,價格下降可期,精度、強度、穩定性、安全性也更加有保障。
趨勢七:“黑科技”闖進醫療界 手術可“排練”、治療更精準
3D打印的“個性化定制”與醫療行業的“對癥下藥”有著天然的契合性,二者的結合主要體現在四個方面:一是術前演練,利用3D打印技術還原出病患部位模型,讓醫生更直觀地了解病理結構,增加了手術的成功率;二是醫療器械,包括助聽器、護具、假肢等外部設備以及關節、軟骨、支架等內植物;三是“量身”制藥,根據患者的生理特點、具體需要調配藥物,提高了藥物的有效性;四是生物打印,用人造血管、心臟、神經、皮膚等來修復、替代和重建病損組織和器官。盡管3D打印在醫療領域的應用還面臨著材料、成本、精度、標準等制約,市場規模也較小,但考慮到醫療領域巨大的需求潛力與極小的需求彈性,3D打印在醫療領域的應用將不斷擴展,在實施更為精準的診療方案、提供更為充足的移植器官等方面大顯身手。
趨勢八:3D打印牽手云制造 有商業影響力的平臺不斷涌現
全球已經進入了高度的信息化時代,互聯網作為信息化的重要工具正在重新定義各行各業。3D打印設備尚未普及,技術使用也不“傻瓜”,沒有設備、沒有技術的普通人該怎樣實現自己的設計想法呢。
成立于2008年的Shapeways公司搭建了一個基于互聯網的3D打印平臺,擔當起服務供應商和需求用戶之間的“紅娘”,解決了用戶的這個“痛點”。如今,MakeXYZ、3DLt、3DHubs、先臨三維、光韻達、魔猴網等也做著類似的事情,南京壹千零壹號自動化科技公司的“1001號云制造平臺”還入選2016年中國“互聯網+”在工業應用領域十大新銳案例之首。
“互聯網+3D打印”開拓了一種全新的商業模式——“云打印”,并將共享經濟的思維引進來,閑置的3D打印機得到了有效使用,客戶也能選擇稱心如意的設備和供應商。
趨勢九:混合打印創造更多可能 功能材質色彩也“混搭”
隨著3D打印技術的發展,人們對3D打印機的期望越來越高,早已不滿足于單一功能、單一材質、單一色彩等。未來,3D打印機可實現3D打印技術與傳統數控機床技術(或不同3D打印技術)的自由切換,實用性將變得更強;3D打印機的“口糧”更加豐富,金屬、塑料、橡膠等多種材料(或不同屬性的材料)的混合使用,將加工出結構更為復雜的產品;打印出的產品也會五彩繽紛。
如日本研發出的一款五軸混合3D打印機(由3D打印機與數控銑床混合而成),能夠在現有工業級5軸控制技術的基礎上連續進行擠出式3D打印和銑削作業;MIT研發的MultiFab 3D打印機能同時處理包括晶狀體、紡織物、光纖等10種材料;加拿大的ORD Solutions公司推出的一款3D打印機,可以使用五種不同顏色的線材打印出多彩作品。
趨勢十:我國3D打印起步早發展慢 產學研協同是突破口
在3D Systems、Stratasys、先臨三維等行業巨頭紛紛跑馬圈地之時,哈佛大學Wyss研究所、加利福尼亞大學勞倫斯·利弗莫爾實驗室(LLNL)、卡內基梅隆大學Adam W.Feinberg研究團隊等科研機構憑借其雄厚的研發實力也不斷實現技術突破。
我國3D打印的研究起步于20世紀90年代,發端于高校,如今已形成清華大學顏永年團隊、北京航空航天大學王華明團隊、西安交通大學盧秉恒團隊、華中科技大學史玉升研究團隊和西北工業大學黃衛東團隊等骨干科研力量,論文和申請專利的數量處于世界第二位。
2016年10月又成立了中國增材制造產業聯盟,國家增材制造創新中心建設方案也通過了專家論證。隨著我國科技體制機制改革的不斷推進,走產學研協同之路,形成長效合作機制,成為我國推進3D打印產業化的現實選擇。
評論
查看更多