完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>
標簽 > 光譜
光譜(spectrum) :是復色光經過色散系統(如棱鏡、光柵)分光后,被色散開的單色光按波長(或頻率)大小而依次排列的圖案,全稱為光學頻譜。
光譜(spectrum) :是復色光經過色散系統(如棱鏡、光柵)分光后,被色散開的單色光按波長(或頻率)大小而依次排列的圖案,全稱為光學頻譜。光譜中最大的一部分可見光譜是電磁波譜中人眼可見的一部分,在這個波長范圍內的電磁輻射被稱作可見光。光譜并沒有包含人類大腦視覺所能區別的所有顏色,譬如褐色和粉紅色。
光波是由原子運動過程中的電子產生的。各種物質的原子內部電子的運動情況不同,所以它們發射的光波也不同。研究不同物質的發光和吸收光的情況,有重要的理論和實際意義,已成為一門專門的學科——光譜學。分子的紅外吸收光譜一般是研究分子的振動光譜與轉動光譜的,其中分子振動光譜一直是主要的研究課題。
光譜(spectrum) :是復色光經過色散系統(如棱鏡、光柵)分光后,被色散開的單色光按波長(或頻率)大小而依次排列的圖案,全稱為光學頻譜。光譜中最大的一部分可見光譜是電磁波譜中人眼可見的一部分,在這個波長范圍內的電磁輻射被稱作可見光。光譜并沒有包含人類大腦視覺所能區別的所有顏色,譬如褐色和粉紅色。
光波是由原子運動過程中的電子產生的。各種物質的原子內部電子的運動情況不同,所以它們發射的光波也不同。研究不同物質的發光和吸收光的情況,有重要的理論和實際意義,已成為一門專門的學科——光譜學。分子的紅外吸收光譜一般是研究分子的振動光譜與轉動光譜的,其中分子振動光譜一直是主要的研究課題。
原理
復色光中有著各種波長(或頻率)的光,這些光在介質中有著不同的折射率。因此,當復色光通過具有一定幾何外形的介質(如三棱鏡)之后,波長不同的光線會因出射角的不同而發生色散現象,投映出連續的或不連續的彩色光帶。這個原理亦被應用于著名的太陽光的色散實驗。太陽光呈現白色,當它通過三棱鏡折射后,將形成由紅、橙、黃、綠、藍、靛、紫順次連續分布的彩色光譜,覆蓋了大約在390到770納米的可見光區。歷史上,這一實驗由英國科學家艾薩克·牛頓爵士于1665年完成,使得人們第一次接觸到了光的客觀的和定量的特征。
光譜定性分析
光譜定性分析就是根據光譜圖中是否有某元素的特征譜線(一般是最后線)出現來判斷樣品中是否含有某種元素。定性分析方法常有以下兩種。(1)標準試樣光譜比較法將要檢出元素的純物質或純化合物與試樣并列攝譜于同一感光板上,在映譜儀上檢查試樣光譜與純物質光譜。若兩者譜線出現在同一波長位置上,即可說明某一元素的某條譜線存在。此法多用于不經常遇到的元素或譜圖上沒有的元素分析。(2)鐵光譜比較法鐵光譜比較法是目前最通用的方法,它采用鐵的光譜作為波長的標尺,來判斷其它元素的譜線。鐵光譜作標尺有如下特點。①譜線多,在210~600nm范圍內有幾千條譜線;②譜線間相距都很近,在上述波長范圍內均勻分布,對每一條鐵譜線波長,人們都已進行了精確的測量。
激發光譜與發射光譜有什么區別?
1. 熒光的定義(fluorescence)。
對于熒光有這樣一些文字的定義和解釋:a. “熒光是物質或分子發出的冷光(luminescence)”。所謂冷光,是指光并非由熱產生,可以是光致、電致、化學反應所致等等(反正就不能是熱致)。b. “當某種常溫物質經某種波長的入射光(通常是紫外線或X射線)照射,吸收光能后進入激發態,立即退激發并發出比入射光波長長的出射光(通常波長在可見光波段);而且一旦停止入射光,發光現象也隨之立即消失。具有這種性質的出射光就被稱之為熒光。”
這些文字的解釋都難以理解和形象化。其實對于熒光最好的解釋來自于對光子與物質分子作用過程(分子的激發和馳豫)的理解。
2. 熒光從何而來 —— 分子的激發和馳豫 ?
圖 1
PS:圖1摘自Principles of fluorescence Spectroscopy, Joseph R. Lakowicz
圖1為一種Jablonski diagram(就簡單的理解為能級圖吧)。圖中S0,S1,S2分別表示分子中的電子基態,第一、第二電子激發態。當分子吸收光子,電子則可能從基態(S0)躍遷到激發態(S1,S2)。激發態電子不穩定,會從激發態(S1,S2)回到基態(S0),并發出熒光(這就是熒光的源頭)。當然并不一定要發出熒光,可以產生熱或者其他形式能量。如果電子從激發態(S1)通過系間竄越轉化為電子T1激發態,然后再從激發態T1回到S0,則發出磷光。(磷光與熒光的根本區別在此)。至于S1激發態和T1激發態的區別主要在于電子自旋的方向(單線態和三線態)。
分子吸收光后其中電子的激發和馳豫分別需要滿足兩大規律。激發過程滿足Franck – Condon規則;退激發滿足Kasha規則。Franck– Condon規則(圖2A)的大意為:電子的躍遷過程很快,這一過程中原子核的相對位置來不及發生變化,可以簡單理解為垂直躍遷。而Kasha規則(圖2B)規定在電子馳豫復合的過程中,首先電子要馳豫到電子激發態的最低能級,然后再回到基態。如圖2所示:
圖 2
PS:圖2摘自維基百科相關詞條
3. 如何解讀熒光光譜(穩態)
3a :熒光光譜分為:激發光譜(PLE)和發射光譜(PL)。
激發光譜:固定發射光的波長,改變激發光的波長,記錄熒光強度隨激發波長的變化。
發射光譜:固定激發光的波長,記錄不同發射波長處熒光強度隨發射波長的變化。
無論是激發還是發射熒光光譜圖,其都是記錄發射熒光強度隨波長的變化。所以熒光光譜中縱坐標為強度,橫坐標為波長。首先從圖中能獲取峰位和半峰寬。峰位的直觀體現是熒光的顏色;半峰寬則表示熒光的純度。
圖 3
PS:圖3摘自Nano Letters,2,1027
熒光光譜常與吸收光譜同時出現。所以可以與分子的吸收光譜相比較。圖3A為同一物質的吸收光譜(UV - Vis)、熒光激發光譜(PLE)和熒光發射光譜圖(PL)。從圖中不難發現激發光譜與吸收光譜非常相似。但是兩者有著本質的不同,吸收光譜的縱坐標是吸光度(Absorbance),反應物質吸收光的情況;熒光光譜的縱坐標是分子發出的熒光強度(Intensity),其不僅與物質吸光能力有關還和量子效率有關。在很多研究體系中,常常結合兩者分析問題。
微波堿熔消解-電感耦合等離子體發射光譜法測定含包覆碳的磷酸鐵鋰中的磷、鐵、鋰
1實驗部分 1.1主要儀器和試劑 儀器:電感耦合等離子體發射光譜儀(上海美析儀器有限公司);微波消解儀。 試劑:GSBG62001鋰、GSBG62...
使用液晶光譜鏡頭進行高光譜成像的效果圖 科學家們發明了一種緊湊型光譜單色透鏡,可將標準照相機變成高光譜照相機,從而減小了系統的體積和復雜性。這一突破可將...
阿貝數在光學中的應用實例 光學是研究光的性質、行為和應用的科學。在光學領域,阿貝數是一個重要的參數,它影響著光學元件的性能,如透鏡、棱鏡和光纖等。 一、...
LIBS 激光誘導擊穿光譜在野外現場礦物勘探中帶來了怎樣的革新?
一、LIBS技術原理及其在礦物勘探中的適用性 1.原理簡述 LIBS技術基于高能量激光脈沖聚焦于樣品表面,使樣品瞬間氣化、電離形成等離子體。在這個過程中...
編輯推薦廠商產品技術軟件/工具OS/語言教程專題
電機控制 | DSP | 氮化鎵 | 功率放大器 | ChatGPT | 自動駕駛 | TI | 瑞薩電子 |
BLDC | PLC | 碳化硅 | 二極管 | OpenAI | 元宇宙 | 安森美 | ADI |
無刷電機 | FOC | IGBT | 逆變器 | 文心一言 | 5G | 英飛凌 | 羅姆 |
直流電機 | PID | MOSFET | 傳感器 | 人工智能 | 物聯網 | NXP | 賽靈思 |
步進電機 | SPWM | 充電樁 | IPM | 機器視覺 | 無人機 | 三菱電機 | ST |
伺服電機 | SVPWM | 光伏發電 | UPS | AR | 智能電網 | 國民技術 | Microchip |
開關電源 | 步進電機 | 無線充電 | LabVIEW | EMC | PLC | OLED | 單片機 |
5G | m2m | DSP | MCU | ASIC | CPU | ROM | DRAM |
NB-IoT | LoRa | Zigbee | NFC | 藍牙 | RFID | Wi-Fi | SIGFOX |
Type-C | USB | 以太網 | 仿真器 | RISC | RAM | 寄存器 | GPU |
語音識別 | 萬用表 | CPLD | 耦合 | 電路仿真 | 電容濾波 | 保護電路 | 看門狗 |
CAN | CSI | DSI | DVI | Ethernet | HDMI | I2C | RS-485 |
SDI | nas | DMA | HomeKit | 閾值電壓 | UART | 機器學習 | TensorFlow |
Arduino | BeagleBone | 樹莓派 | STM32 | MSP430 | EFM32 | ARM mbed | EDA |
示波器 | LPC | imx8 | PSoC | Altium Designer | Allegro | Mentor | Pads |
OrCAD | Cadence | AutoCAD | 華秋DFM | Keil | MATLAB | MPLAB | Quartus |
C++ | Java | Python | JavaScript | node.js | RISC-V | verilog | Tensorflow |
Android | iOS | linux | RTOS | FreeRTOS | LiteOS | RT-THread | uCOS |
DuerOS | Brillo | Windows11 | HarmonyOS |