色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

電子發燒友App

硬聲App

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示
電子發燒友網>電子資料下載>電子資料>PyTorch教程之從零開始的遞歸神經網絡實現

PyTorch教程之從零開始的遞歸神經網絡實現

2023-06-05 | pdf | 0.36 MB | 次下載 | 免費

資料介紹

我們現在準備好從頭開始實施 RNN。特別是,我們將訓練此 RNN 作為字符級語言模型(參見 第 9.4 節),并按照第 9.2 節中概述的數據處理步驟,在由 HG Wells 的《時間機器》的整個文本組成的語料庫上對其進行訓練. 我們首先加載數據集。

%matplotlib inline
import math
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
%matplotlib inline
import math
from mxnet import autograd, gluon, np, npx
from d2l import mxnet as d2l

npx.set_np()
%matplotlib inline
import math
import jax
from flax import linen as nn
from jax import numpy as jnp
from d2l import jax as d2l
%matplotlib inline
import math
import tensorflow as tf
from d2l import tensorflow as d2l

9.5.1. 循環神經網絡模型

我們首先定義一個類來實現 RNN 模型(第 9.4.2 節)。請注意,隱藏單元的數量num_hiddens是一個可調的超參數。

class RNNScratch(d2l.Module): #@save
  """The RNN model implemented from scratch."""
  def __init__(self, num_inputs, num_hiddens, sigma=0.01):
    super().__init__()
    self.save_hyperparameters()
    self.W_xh = nn.Parameter(
      torch.randn(num_inputs, num_hiddens) * sigma)
    self.W_hh = nn.Parameter(
      torch.randn(num_hiddens, num_hiddens) * sigma)
    self.b_h = nn.Parameter(torch.zeros(num_hiddens))
class RNNScratch(d2l.Module): #@save
  """The RNN model implemented from scratch."""
  def __init__(self, num_inputs, num_hiddens, sigma=0.01):
    super().__init__()
    self.save_hyperparameters()
    self.W_xh = np.random.randn(num_inputs, num_hiddens) * sigma
    self.W_hh = np.random.randn(
      num_hiddens, num_hiddens) * sigma
    self.b_h = np.zeros(num_hiddens)
class RNNScratch(nn.Module): #@save
  """The RNN model implemented from scratch."""
  num_inputs: int
  num_hiddens: int
  sigma: float = 0.01

  def setup(self):
    self.W_xh = self.param('W_xh', nn.initializers.normal(self.sigma),
                (self.num_inputs, self.num_hiddens))
    self.W_hh = self.param('W_hh', nn.initializers.normal(self.sigma),
                (self.num_hiddens, self.num_hiddens))
    self.b_h = self.param('b_h', nn.initializers.zeros, (self.num_hiddens))
class RNNScratch(d2l.Module): #@save
  """The RNN model implemented from scratch."""
  def __init__(self, num_inputs, num_hiddens, sigma=0.01):
    super().__init__()
    self.save_hyperparameters()
    self.W_xh = tf.Variable(tf.random.normal(
      (num_inputs, num_hiddens)) * sigma)
    self.W_hh = tf.Variable(tf.random.normal(
      (num_hiddens, num_hiddens)) * sigma)
    self.b_h = tf.Variable(tf.zeros(num_hiddens))

下面的方法forward定義了如何計算任何時間步的輸出和隱藏狀態,給定當前輸入和模型在前一個時間步的狀態。請注意,RNN 模型循環遍歷 的最外層維度inputs,一次更新隱藏狀態。這里的模型使用了tanh激活函數(第 5.1.2.3 節)。

@d2l.add_to_class(RNNScratch) #@save
def forward(self, inputs, state=None):
  if state is None:
    # Initial state with shape: (batch_size, num_hiddens)
    state = torch.zeros((inputs.shape[1], self.num_hiddens),
             device=inputs.device)
  else:
    state, = state
  outputs = []
  for X in inputs: # Shape of inputs: (num_steps, batch_size, num_inputs)
    state = torch.tanh(torch.matmul(X, self.W_xh) +
             torch.matmul(state, self.W_hh) + self.b_h)
    outputs.append(state)
  return outputs, state
@d2l.add_to_class(RNNScratch) #@save
def forward(self, inputs, state=None):
  if state is None:
    # Initial state with shape: (batch_size, num_hiddens)
    state = np.zeros((inputs.shape[1], self.num_hiddens),
             ctx=inputs.ctx)
  else:
    state, = state
  outputs = []
  for X in inputs: # Shape of inputs: (num_steps, batch_size, num_inputs)
    state = np.tanh(np.dot(X, self.W_xh) +
             np.dot(state, self.W_hh) + self.b_h)
    outputs.append(state)
  return outputs, state
@d2l.add_to_class(RNNScratch) #@save
def __call__(self, inputs, state=None):
  if state is not None:
    state, = state
  outputs = []
  for X in inputs: # Shape of inputs: (num_steps, batch_size, num_inputs)
    state = jnp.tanh(jnp.matmul(X, self.W_xh) + (
      jnp.matmul(state, self.W_hh) if state is not None else 0)
             + self.b_h)
    outputs.append(state)
  return outputs, state
@d2l.add_to_class(RNNScratch) #@save
def forward(self, inputs, state=None):
  if state is None:
    # Initial state with shape: (batch_size, num_hiddens)
    state = tf.zeros((inputs.shape[1], self.num_hiddens))
  else:
    state, = state
    state = tf.reshape(state, (-1, self.num_hiddens))
  outputs = []
  for X in inputs: # Shape of inputs: (num_steps, batch_size, num_inputs)
    state = tf.tanh(tf.matmul(X, self.W_xh) +
             tf.matmul(state, self.W_hh) + self.b_h)
    outputs.append(state)
  return outputs, state

我們可以將一小批輸入序列輸入 RNN 模型,如下所示。

batch_size, num_inputs, num_hiddens, num_steps = 2, 16, 32, 100
rnn = RNNScratch(num_inputs, num_hiddens)
X = torch.ones((num_steps, batch_size, num_inputs))
outputs, state = rnn(X)
batch_size, num_inputs, num_hiddens, num_steps = 2, 16, 32, 100
rnn = RNNScratch(num_inputs, num_hiddens)
X = np.ones((num_steps, batch_size, num_inputs))
outputs, state = rnn(X)
batch_size, num_inputs, num_hiddens, num_steps = 2, 16, 32, 100
rnn = RNNScratch(num_inputs, num_hiddens)
X = jnp.ones((num_steps, batch_size, num_inputs))
(output
下載該資料的人也在下載 下載該資料的人還在閱讀
更多 >

評論

查看更多

下載排行

本周

  1. 1AN158 GD32VW553 Wi-Fi開發指南
  2. 1.51MB   |  2次下載  |  免費
  3. 2嵌入式軟件開發符合ISO 26262 功能安全標準
  4. 1.61 MB  |  1次下載  |  免費
  5. 3AN095 提高GD32溫度傳感器使用精度的方法
  6. 631.03KB   |  1次下載  |  免費
  7. 4PZT驅動開關電路
  8. 0.09 MB   |  1次下載  |  免費
  9. 5模擬電路仿真實現
  10. 2.94MB   |  1次下載  |  免費
  11. 6PCB繪制基礎知識
  12. 2.44MB   |  1次下載  |  免費
  13. 7電子線路板及仿真實現
  14. 1.54MB   |  1次下載  |  免費
  15. 8AN4873-使用PIC單片機的集成運算放大器測量水中的總溶解固體
  16. 591.02KB   |  1次下載  |  免費

本月

  1. 1ADI高性能電源管理解決方案
  2. 2.43 MB   |  452次下載  |  免費
  3. 2免費開源CC3D飛控資料(電路圖&PCB源文件、BOM、
  4. 5.67 MB   |  139次下載  |  1 積分
  5. 3基于STM32單片機智能手環心率計步器體溫顯示設計
  6. 0.10 MB   |  132次下載  |  免費
  7. 4美的電磁爐維修手冊大全
  8. 1.56 MB   |  24次下載  |  5 積分
  9. 5如何正確測試電源的紋波
  10. 0.36 MB   |  19次下載  |  免費
  11. 6感應筆電路圖
  12. 0.06 MB   |  10次下載  |  免費
  13. 7LZC3106G高性能諧振控制器中文手冊
  14. 1.29 MB   |  9次下載  |  1 積分
  15. 8萬用表UT58A原理圖
  16. 0.09 MB   |  9次下載  |  5 積分

總榜

  1. 1matlab軟件下載入口
  2. 未知  |  935121次下載  |  10 積分
  3. 2開源硬件-PMP21529.1-4 開關降壓/升壓雙向直流/直流轉換器 PCB layout 設計
  4. 1.48MB  |  420062次下載  |  10 積分
  5. 3Altium DXP2002下載入口
  6. 未知  |  233088次下載  |  10 積分
  7. 4電路仿真軟件multisim 10.0免費下載
  8. 340992  |  191367次下載  |  10 積分
  9. 5十天學會AVR單片機與C語言視頻教程 下載
  10. 158M  |  183335次下載  |  10 積分
  11. 6labview8.5下載
  12. 未知  |  81581次下載  |  10 積分
  13. 7Keil工具MDK-Arm免費下載
  14. 0.02 MB  |  73810次下載  |  10 積分
  15. 8LabVIEW 8.6下載
  16. 未知  |  65988次下載  |  10 積分
主站蜘蛛池模板: 欧美激情精品久久久久| 一道本在线伊人蕉无码| 成年私人影院网站在线看| 色悠久久久久综合欧美99| 国产精品一区二区20P| 亚洲专区区免费| 女人色极品影院| 国产精品久久久久久免费字体| 亚洲性无码av在线| 伦 乱真实故事| 国产高清-国产av| 中文字幕人成乱码熟女APP| 日本电影护士| 九九热在线免费观看| 爱如潮水3免费观看日本| 亚洲AV精品一区二区三区不卡 | 91精品国产91热久久p| 色多多旧版污污破解版| 久久久久国产一级毛片高清片| xxx88中国| 亚洲视频无码中字在线| 琪琪婷婷五月色综合久久| 國產麻豆AVMDXMDX| JIZZ19学生第一次| 亚洲午夜久久久精品影院| 日本性xxx| 伦理片秋霞免费影院| 国产免费毛片在线观看| cctv官网| 一二三四在线播放免费观看中文版视频| 日本电影护士| 蜜桃臀无码内射一区二区三区 | 成人影院久久久久久影院| 一色狗影院| 无码人妻精品一区二区蜜桃色| 蜜桃臀无码内射一区二区三区| 国产亚洲精品久久久久| 插骚妇好爽好骚| 91麻豆精品国产一级| 亚洲精品午夜aaa级久久久久| 日本久久网站|