資料介紹
為什么未遭受壓力的器件有時候會無緣無故地失效?
有時候器件是"壽終正寢",有時候是存在壓力但不明顯。
器件的"壽終正寢"是一種源于物理或化學變化的累積性衰退效應。大家都知道,電解電容和某些類型的薄膜電容"終有一死",原因是在微量雜質(氧氣等)和電壓力的共同作用下,其電介質會發生化學反應。集成電路結構遵循摩爾定律,變得越來越小,正常工作溫度下的摻雜物遷移導致器件在數十年(而非原來的數百年)內失效的風險在提高。另外,磁致伸縮引發的疲勞會使電感發生機械疲勞,這是一種廣為人知的效應。某些類型的電阻材料會在空氣中緩慢氧化,當空氣變得更為潮濕時,氧化速度會加快。同樣,沒有人會期望電池永遠有效。
因此,在選擇器件時,有必要了解其結構和可能的老化相關失效機制;即使在理想條件下使用器件,這些機制也可能發生影響。本欄目不會詳細討論失效機制,但多數聲譽良好的制造商會關注其產品的老化現象,對工作壽命和潛在失效機制通常都很熟悉。許多系統制造商針對其產品的安全工作壽命及其限制機制提供了相關資料。
然而,???適當的工作條件下,大多數電子器件的預期壽命可達數十年,甚至更長,但有些仍會過早失效。原因常常是不被人注意的壓力。
在這個"非常見問題解答"欄目中,我們不斷地提醒讀者:一個引用墨菲定律的有用說法是"物理定律不會僅僅因為你沒注意它而不起作用"。許多壓力機制被輕易地忽視。
任何設計海洋環境下使用的電子產品的人,都會考慮鹽霧和 濕度—這是理所應當的,因為它們太可怕了!其實,許多電子設備都可能遭遇不那么可怕,但仍可能造成傷害的化學挑戰。人(和動物)的呼吸含有濕氣,而且略呈酸性。廚房和其他家居環境包含各類輕度腐蝕性煙霧,如漂白劑、消毒劑、各類烹飪煙霧、油和酒精等,所有這些煙霧的危害都不是很大,但我們不應想當然地認為,我們的電路會在受到完好保護的條件下"安度終生"。設計人員務必要考慮電路會遇到的環境挑戰,在經濟可行的情況下,應當通過設計來將任何潛在危害降至最小。
靜電損害(ESD)是一種壓力機制,與此相關的警告是最常見的,但我們往往視而不見。PCB在生產時,工廠會采取充分措施來消除制造過程中的ESD,但交付后,許多PCB被用在對一般操作引起的ESD沒有足夠防護措施的系統中。做好充足的防護并不難,只是會增加少許成本,因而常常遭到忽略。(可能是因為經濟不景氣)。在正常使用的最極端情況下評估系統電子器件需要何種ESD保護并考慮如何實現,應當成為所有設計的一部分。
另一個因素是過壓。很少有人要求半導體或電容即使遭受重大過壓也無恙,但大值電阻遇到遠大于數據手冊所列絕對最大值的電壓是常見現象。問題在于:雖然其阻值足夠高,不會變熱,但內部可能產生微小電弧,導致其緩慢漂移而偏離規格,最終短路。大的繞線電阻通常具有數百伏的擊穿電壓,因此,過去這個問題并不常見,但如今廣泛使用小型表貼電阻,其擊穿電壓可能低于30 V,相當容易受過壓影響。
大電流也會造成問題。大家都很熟悉普通保險絲—它是一段導線,如有過大電流流經其中,它就會變熱并熔斷,從而防止電源短路及其他類似問題。但是,若在非常小的導體中有極高的電流密度,導體可能不會變得非常熱,不過最終仍可能失效。原因是所謂的電遷移(有時也稱為離子遷移)。即導電電子與擴散金屬原子之間的動量傳遞導致導體中的離子逐漸運動,引起物質運輸效應。這使得攜帶大直流電流的薄導體隨著時間推移而變得越來越薄,最終失效。
但有些部分會像保險絲一樣失效,即熔斷,比如導線或半導體芯片上的導電走線。大電流造成這種現象的一個常見原因是電容充電電流太大。考慮一個ESR為1 Ω的1 μF電容,如果將它連接在110 V、60 Hz交流電源上,則有大約41 mA的交流電流流經其中。但如果在電壓處于最大值(110√2 = 155.6 V)時連接到交流電源,則只有ESR會限流,峰值電流將達到155.6 A,盡管其持續時間不到1 μs,也足以損壞許多小信號半導體器件。重復發生浪涌可能會損壞電容本身,尤其是電解電容。在用于給小型電子設備充電的廉價低壓開關電源("壁式電源適配器")中,這是特別常見的失效機制。如果在一個交流周期的錯誤時間插入,整流器和電容就會攜帶非常大的浪涌電流,這種情況若多次發生,最終可能會損壞器件。用一個小電阻與整流器串聯,可以限制此浪涌電流,使問題最小化。
如果我們很幸運,ESD或過壓/過流事件會立即損壞器件,這樣很容易知道問題所在。但更常見的情況是,壓力引起的損害導致器件失效,而最開始引發故障的壓力早已消失。要診斷此類失效的原因是非常困難的,甚至是不可能的。
無論設計什么電路,都有必要考慮所用器件的工作壽命和失效機制,以及在容許的最極端使用條件下,是否有任何潛在問題或壓力源會導致器件受損。任何此類問題都應當考慮,并盡可能在最終設計中予以最小化。
(mbbeetchina)
下載該資料的人也在下載
下載該資料的人還在閱讀
更多 >
- 谷景科普一體成型電感在電路中失效的原因
- 我們在談論音質的時候在談論什么資料下載
- 元器件失效機理有哪幾種?資料下載
- PCB失效或不良的準確原因和機理資料下載
- 器件常因過熱失效,電路板散熱處理方法!資料下載
- 分類細敘各類電子元器件的失效模式與機理資料下載
- 不同種類電容的失效分析資料下載
- 各類電容的特性及失效分析一覽資料下載
- IGBT失效防護機理及電路資料下載
- PCB的15個失效分析案例資料下載
- 如何識別鉭電容失效和假貨?資料下載
- 陶瓷電容失效分析資料下載
- 封裝缺陷與失效的研究方法論資料下載
- 電子元器件失效率試驗方法國家標準資料免費下載 45次下載
- 長虹PF29118(F28)有時候不開機分析與檢修
- 塑封器件絕緣失效分析 268次閱讀
- 壓力傳感器電路圖和接線圖分享 2.1w次閱讀
- 半導體器件鍵合失效模式及機理分析 1928次閱讀
- 為什么無應力部件有時會無緣無故地失效 430次閱讀
- 電子元器件的失效模式與機理 3263次閱讀
- 開關電源EMC知識總結 2597次閱讀
- win10桌面上莫名其妙出現無法卸載的神秘文件,該如何解決? 2904次閱讀
- 三極管放大原理的理解 8482次閱讀
- 壓阻式壓力傳感器工作原理 2.3w次閱讀
- 最完整的開關電源EMC知識匯總 1.4w次閱讀
- MEMS慣性器件典型失效模式及失效機理研究 8016次閱讀
- 無線充電器有時候放上去沒反應_無線充電怎么用不了 12.9w次閱讀
- 常用的電子元器件失效機理與故障分析 4006次閱讀
- 三極管原理帶你通俗理解什么是三極管 1w次閱讀
- 三極管原理大壩說——帶你通俗理解三極管 3003次閱讀
下載排行
本周
- 1山景DSP芯片AP8248A2數據手冊
- 1.06 MB | 532次下載 | 免費
- 2RK3399完整板原理圖(支持平板,盒子VR)
- 3.28 MB | 339次下載 | 免費
- 3TC358743XBG評估板參考手冊
- 1.36 MB | 330次下載 | 免費
- 4DFM軟件使用教程
- 0.84 MB | 295次下載 | 免費
- 5元宇宙深度解析—未來的未來-風口還是泡沫
- 6.40 MB | 227次下載 | 免費
- 6迪文DGUS開發指南
- 31.67 MB | 194次下載 | 免費
- 7元宇宙底層硬件系列報告
- 13.42 MB | 182次下載 | 免費
- 8FP5207XR-G1中文應用手冊
- 1.09 MB | 178次下載 | 免費
本月
- 1OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234315次下載 | 免費
- 2555集成電路應用800例(新編版)
- 0.00 MB | 33566次下載 | 免費
- 3接口電路圖大全
- 未知 | 30323次下載 | 免費
- 4開關電源設計實例指南
- 未知 | 21549次下載 | 免費
- 5電氣工程師手冊免費下載(新編第二版pdf電子書)
- 0.00 MB | 15349次下載 | 免費
- 6數字電路基礎pdf(下載)
- 未知 | 13750次下載 | 免費
- 7電子制作實例集錦 下載
- 未知 | 8113次下載 | 免費
- 8《LED驅動電路設計》 溫德爾著
- 0.00 MB | 6656次下載 | 免費
總榜
- 1matlab軟件下載入口
- 未知 | 935054次下載 | 免費
- 2protel99se軟件下載(可英文版轉中文版)
- 78.1 MB | 537798次下載 | 免費
- 3MATLAB 7.1 下載 (含軟件介紹)
- 未知 | 420027次下載 | 免費
- 4OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234315次下載 | 免費
- 5Altium DXP2002下載入口
- 未知 | 233046次下載 | 免費
- 6電路仿真軟件multisim 10.0免費下載
- 340992 | 191187次下載 | 免費
- 7十天學會AVR單片機與C語言視頻教程 下載
- 158M | 183279次下載 | 免費
- 8proe5.0野火版下載(中文版免費下載)
- 未知 | 138040次下載 | 免費
評論
查看更多