資料介紹
盡管開關電源的工作頻率遠超過人類的聽力范圍,但它們在特定的負載條件下可以產生音頻噪聲。音頻噪聲的可能來源多種多樣。噪聲可以是設計缺陷(如振蕩輸出電壓)導致,或者由電容或變壓器等噪聲元件導致。在有些情況下,所聽到的尖銳刺耳的噪鳴或嘶嘶聲可能就像風扇在異常頻率下出現的搖蕩,或者由于電源靠近外部EMI源(熒光燈或電源插排)所導致。
本文將探討反激式電源中最常見的噪聲來源,并介紹可能的解決方案。下文中描述的所有操作程序都可以使用一個可程控交流電源供應器或自耦變壓器和一個電子負載來完成。請記住,在有些情況下,電源所產生的噪聲水平可能非常低,如果該電源將在密閉殼體內使用,那么音頻噪聲就不會構成問題。
可能的噪聲源
反激式電源中最常見的噪聲源是噪聲元件。這種噪聲通常由陶瓷電容或鐵氧體變壓器磁芯產生。陶瓷電容中的噪聲通常由逆向壓電效應造成。對介質結構施加電壓后,會引發機械應力或應變,造成材料變形。當這種材料發生變形時,會排出周圍的空氣,從而產生噪聲。
由于在發生較大的電壓擺動時會出現逆向壓電效應,因此設計師可以重點查找出現較高dV/dt擺幅的陶瓷電容。在典型的電源中,這些電容包括緩沖電容、箝位電容以及陶瓷輸出電容
要想快速確定一個陶瓷電容是否在產生噪聲,請用一個具有相同電容值和適當電壓額定值的金屬膜電容將其替換。如果噪聲水平下降,說明您找到了電路中的噪聲源。
如果噪聲源是箝位電容,可以用一個金屬膜電容將其徹底替換,或者嘗試使用介質材料不同的陶瓷電容。另一個方法是,更換正在使用的箝位電容,例如,將其更換為穩壓管箝位電路。如果噪聲問題源自緩沖電容,可以用一個金屬膜電容將其替換,也可以提高串聯電阻的值,以降低電容上的dV/dt噪聲。您也可以改用其它介質的陶瓷電容,看噪聲能否降低。
圖1:修復高噪聲箝位電容的方法
如果噪聲問題存在于陶瓷輸出電容,可以嘗試許多不同的策略來解決。其中一個方法是,嘗試換用電解電容或換用其他介質材料的電容。或者,可以用多個并聯陶瓷電容來替換問題電容。每個電容尺寸的減小將使其表面積相應減小,從而改變電容的機械共振。
管理變壓器磁芯噪聲
另一方面,變壓器磁芯產生的噪聲通常由磁致伸縮造成,它類似于逆向壓電效應。當受到磁場影響時,許多鐵磁材料都會改變形狀。隨著變壓器磁芯中磁場的變化,此類材料會使磁芯發生物理振動。當振動頻率達到變壓器的機械共振頻率時,振動就會被放大,并造成更大的音頻噪聲。在交流電氣設備(如使用60 Hz外加磁場的變壓器)中,最大長度變化每周期出現兩次,從而產生熟悉的120 Hz噪聲。
如果您的設計出現這種問題,在開始排查原因之前首先要確保它不是由設計不當引起。首先,確認所提供的輸入電壓和輸出負載符合設計規格。如果電源的工作電壓低于指定的最低輸入電壓,或高于指定的輸出負載,那么部分交流周期將會失去穩壓,這樣會造成磁芯中的磁通量增大并產生噪聲。
如果輸入電壓和負載處于規格范圍之內,接下來檢驗輸入大容量電容的值是否正確。如果輸入電容相對于應用而言過小,直流總線電壓將在交流刷新周期之間大幅降低,造成部分輸入的交流周期失去穩壓。
變壓器中包含多種可活動元件,如線圈、隔離膠帶和骨架,它們使變壓器成為了常見的噪聲源。線圈中電流可產生電磁場,電磁場會產生令許多變壓器元件出現機械振動的力。減小變壓器元件物理移動的最有效方法是使用粘合材料或涂漆。例如,用清漆浸漬磁芯是一種廣泛使用的方法,用來防止磁芯隨骨架進行振動。雖然供應商提供了眾多涂漆技術,但我們推薦使用清漆浸漬技術,而不是真空浸漬,這是因為真空浸漬會大幅提高繞組電容,從而降低效率并使EMI增大。
如果您的設計需要使用長磁芯型變壓器,則可以采用的另一個策略是使用標準磁芯長度。長磁芯產品(如EEL型變壓器和EERL型變壓器)都具有極低的機械諧振頻率。這種低諧振頻率容易增大音頻噪聲。采用諧振頻率較高的標準磁芯長度可以緩解該問題。但務必要注意,如果改用較短的標準磁芯,則必須使用更大的磁芯尺寸,才能提供足夠的繞組窗口面積。
處理脈沖束流
脈沖束流是另一個潛在的噪聲源。當設計中的傳導電流脈沖聚集在一起,然后出現更多數量的跳脈沖時,就會出現脈沖束流現象。脈沖聚集會在開關模式中產生頻率分量,它們通常都在聽覺范圍內。脈沖束流在采用開/關控制模式的電源中最為常見。
為確定您的設計中是否存在這種現象,請斷開MOSFET漏極走線,然后插入一個電流環,以監測漏極電流的開關模式。
電源在正常負載下工作時,使用一個電流探針和一個示波器抓取在一個寬時間量程內的一組漏極開關脈沖。下圖對顯示脈沖束流的波形與具有正常開關模式的波形進行了比較。如果看到類似于左圖的脈沖–一行出現大量脈沖,接著是兩個或更多跳脈沖,就說明您的設計可能存在這種問題。
本文將探討反激式電源中最常見的噪聲來源,并介紹可能的解決方案。下文中描述的所有操作程序都可以使用一個可程控交流電源供應器或自耦變壓器和一個電子負載來完成。請記住,在有些情況下,電源所產生的噪聲水平可能非常低,如果該電源將在密閉殼體內使用,那么音頻噪聲就不會構成問題。
可能的噪聲源
反激式電源中最常見的噪聲源是噪聲元件。這種噪聲通常由陶瓷電容或鐵氧體變壓器磁芯產生。陶瓷電容中的噪聲通常由逆向壓電效應造成。對介質結構施加電壓后,會引發機械應力或應變,造成材料變形。當這種材料發生變形時,會排出周圍的空氣,從而產生噪聲。
由于在發生較大的電壓擺動時會出現逆向壓電效應,因此設計師可以重點查找出現較高dV/dt擺幅的陶瓷電容。在典型的電源中,這些電容包括緩沖電容、箝位電容以及陶瓷輸出電容
要想快速確定一個陶瓷電容是否在產生噪聲,請用一個具有相同電容值和適當電壓額定值的金屬膜電容將其替換。如果噪聲水平下降,說明您找到了電路中的噪聲源。
如果噪聲源是箝位電容,可以用一個金屬膜電容將其徹底替換,或者嘗試使用介質材料不同的陶瓷電容。另一個方法是,更換正在使用的箝位電容,例如,將其更換為穩壓管箝位電路。如果噪聲問題源自緩沖電容,可以用一個金屬膜電容將其替換,也可以提高串聯電阻的值,以降低電容上的dV/dt噪聲。您也可以改用其它介質的陶瓷電容,看噪聲能否降低。
圖1:修復高噪聲箝位電容的方法
如果噪聲問題存在于陶瓷輸出電容,可以嘗試許多不同的策略來解決。其中一個方法是,嘗試換用電解電容或換用其他介質材料的電容。或者,可以用多個并聯陶瓷電容來替換問題電容。每個電容尺寸的減小將使其表面積相應減小,從而改變電容的機械共振。
管理變壓器磁芯噪聲
另一方面,變壓器磁芯產生的噪聲通常由磁致伸縮造成,它類似于逆向壓電效應。當受到磁場影響時,許多鐵磁材料都會改變形狀。隨著變壓器磁芯中磁場的變化,此類材料會使磁芯發生物理振動。當振動頻率達到變壓器的機械共振頻率時,振動就會被放大,并造成更大的音頻噪聲。在交流電氣設備(如使用60 Hz外加磁場的變壓器)中,最大長度變化每周期出現兩次,從而產生熟悉的120 Hz噪聲。
如果您的設計出現這種問題,在開始排查原因之前首先要確保它不是由設計不當引起。首先,確認所提供的輸入電壓和輸出負載符合設計規格。如果電源的工作電壓低于指定的最低輸入電壓,或高于指定的輸出負載,那么部分交流周期將會失去穩壓,這樣會造成磁芯中的磁通量增大并產生噪聲。
如果輸入電壓和負載處于規格范圍之內,接下來檢驗輸入大容量電容的值是否正確。如果輸入電容相對于應用而言過小,直流總線電壓將在交流刷新周期之間大幅降低,造成部分輸入的交流周期失去穩壓。
變壓器中包含多種可活動元件,如線圈、隔離膠帶和骨架,它們使變壓器成為了常見的噪聲源。線圈中電流可產生電磁場,電磁場會產生令許多變壓器元件出現機械振動的力。減小變壓器元件物理移動的最有效方法是使用粘合材料或涂漆。例如,用清漆浸漬磁芯是一種廣泛使用的方法,用來防止磁芯隨骨架進行振動。雖然供應商提供了眾多涂漆技術,但我們推薦使用清漆浸漬技術,而不是真空浸漬,這是因為真空浸漬會大幅提高繞組電容,從而降低效率并使EMI增大。
如果您的設計需要使用長磁芯型變壓器,則可以采用的另一個策略是使用標準磁芯長度。長磁芯產品(如EEL型變壓器和EERL型變壓器)都具有極低的機械諧振頻率。這種低諧振頻率容易增大音頻噪聲。采用諧振頻率較高的標準磁芯長度可以緩解該問題。但務必要注意,如果改用較短的標準磁芯,則必須使用更大的磁芯尺寸,才能提供足夠的繞組窗口面積。
處理脈沖束流
脈沖束流是另一個潛在的噪聲源。當設計中的傳導電流脈沖聚集在一起,然后出現更多數量的跳脈沖時,就會出現脈沖束流現象。脈沖聚集會在開關模式中產生頻率分量,它們通常都在聽覺范圍內。脈沖束流在采用開/關控制模式的電源中最為常見。
為確定您的設計中是否存在這種現象,請斷開MOSFET漏極走線,然后插入一個電流環,以監測漏極電流的開關模式。
電源在正常負載下工作時,使用一個電流探針和一個示波器抓取在一個寬時間量程內的一組漏極開關脈沖。下圖對顯示脈沖束流的波形與具有正常開關模式的波形進行了比較。如果看到類似于左圖的脈沖–一行出現大量脈沖,接著是兩個或更多跳脈沖,就說明您的設計可能存在這種問題。
下載該資料的人也在下載
下載該資料的人還在閱讀
更多 >
- 反激式電源中最常見的噪聲來源
- 反激式開關電源原理資料下載 0次下載
- 反激式開關電源EMI傳導騷擾的抑制
- 反激式開關電源在低溫下的使用
- 反激式開關電源總結
- 單端反激式開關電源RCD反激鉗位電路設計方法
- 反激式正激式推挽式半橋式全橋式開關電源優缺點
- 單端反激式開關電源變壓器設計方案 32次下載
- 反激式開關電源變壓器設計案例分析 315次下載
- 他激式單端反激開關電源工作原理 25次下載
- 反激式開關電源設計_制作_調試 210次下載
- 反激式-最高達6W電源方案 10次下載
- 反激式-最高達8.5W電源方案 11次下載
- 修復存在音頻噪聲的反激式電源
- 反激式開關電源的設計計算
- 什么是反激電源?反激電源設計步驟和注意事項 8825次閱讀
- 緩沖電路抑制多輸出DC-DC反激式轉換器電源中的電壓瞬態尖峰 2752次閱讀
- 不帶光耦合器的反激式轉換器:現有選項 1071次閱讀
- 反激式轉換器的計算公式 5367次閱讀
- 反激式拓撲的工作原理 5975次閱讀
- 采用數學方法實現反激式電源的優化設計 3921次閱讀
- 無需光耦合器的反激式轉換器 3761次閱讀
- 如何提高反激式電源的交叉調整率 7035次閱讀
- 反激式開關電源是什么 反激式開關電源原理分析 7.6w次閱讀
- 開關電源噪音產生的原因_如何改善反激式開關電源噪音 1.6w次閱讀
- 反激式變壓器介紹,反激式變壓器的優缺點 1.6w次閱讀
- 反激式開關電源電路圖大全(高頻變壓器/反激式轉換器/雙環路反饋系統) 6w次閱讀
- 反激開關電源波形分析 8.6w次閱讀
- 盤點反激式電源中常見噪聲來源及可行性解決方案 4028次閱讀
- 基于UCC28600的準諧振反激式開關電源的設計方案 1.4w次閱讀
下載排行
本周
- 1TC358743XBG評估板參考手冊
- 1.36 MB | 330次下載 | 免費
- 2開關電源基礎知識
- 5.73 MB | 6次下載 | 免費
- 3100W短波放大電路圖
- 0.05 MB | 4次下載 | 3 積分
- 4嵌入式linux-聊天程序設計
- 0.60 MB | 3次下載 | 免費
- 5基于FPGA的光纖通信系統的設計與實現
- 0.61 MB | 2次下載 | 免費
- 651單片機窗簾控制器仿真程序
- 1.93 MB | 2次下載 | 免費
- 751單片機大棚環境控制器仿真程序
- 1.10 MB | 2次下載 | 免費
- 8基于51單片機的RGB調色燈程序仿真
- 0.86 MB | 2次下載 | 免費
本月
- 1OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234315次下載 | 免費
- 2555集成電路應用800例(新編版)
- 0.00 MB | 33564次下載 | 免費
- 3接口電路圖大全
- 未知 | 30323次下載 | 免費
- 4開關電源設計實例指南
- 未知 | 21549次下載 | 免費
- 5電氣工程師手冊免費下載(新編第二版pdf電子書)
- 0.00 MB | 15349次下載 | 免費
- 6數字電路基礎pdf(下載)
- 未知 | 13750次下載 | 免費
- 7電子制作實例集錦 下載
- 未知 | 8113次下載 | 免費
- 8《LED驅動電路設計》 溫德爾著
- 0.00 MB | 6653次下載 | 免費
總榜
- 1matlab軟件下載入口
- 未知 | 935054次下載 | 免費
- 2protel99se軟件下載(可英文版轉中文版)
- 78.1 MB | 537796次下載 | 免費
- 3MATLAB 7.1 下載 (含軟件介紹)
- 未知 | 420026次下載 | 免費
- 4OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234315次下載 | 免費
- 5Altium DXP2002下載入口
- 未知 | 233046次下載 | 免費
- 6電路仿真軟件multisim 10.0免費下載
- 340992 | 191185次下載 | 免費
- 7十天學會AVR單片機與C語言視頻教程 下載
- 158M | 183279次下載 | 免費
- 8proe5.0野火版下載(中文版免費下載)
- 未知 | 138040次下載 | 免費
評論
查看更多