資料介紹
混跡模擬領域,模擬工程師不懂模數轉換器(ADC)那怎么行?在電子領域中模擬技術是被公認的最難的技術,眾多資深的模擬工程師無一不是從百上千次的實踐中不斷學習,不斷摸索。但是作為初級的模擬工程師呢?如何能夠快速的上手并在模擬技術領域快速的成長呢?本文針對模擬工程師的必備知識-模數轉換器(ADC)進行了知識整理與講解。
什么是ADC,ADC是什么意思
??adc: Analog-to-Digital Converter的縮寫,意思是模/數轉換器。實現把模擬信號轉變為數字量的設備稱為模—數(A/D)轉換器,簡稱ADC
??ADC(A/D轉換器)
??在ADC轉換器中,一般經過采樣、保持、量化和編碼這四個步驟來完成從模擬量到數字量的轉換。
??(1)采樣與保持
(2)量化與編碼
?數字信號最低有效位的1即1LSB所代表的數量就是這個最小數量單位,稱為量化單位,用Δ表示。
??將采樣輸出電壓用最小單位的整數倍來表示,這個過程就叫量化。
??將量化的結果用代碼表示出來的過程就稱為編碼。編碼輸出的結果就是A/D轉換器的輸出。
A/D轉換電路方式
??模—數轉換器根據其工作原理大致分為并行式和并/串式A/D、逐次逼近式、雙積分式和計數比較式A/D等幾種形式。
??逐次逼近式A/D由電壓比較器、D/A轉換器、逐次逼近寄存器(SAR)和控制邏輯等組成。
?ADC0808/0809
IN0~IN7:模擬量輸入腳;
??ADDA、ADDB、ADDC:通道地址輸入端。
??CLOCK:時鐘輸入端。
??ALE:地址鎖存允許端。
??START:啟動脈沖輸入端。
??EOC:轉換結束信號端。
??OE:允許輸出端。
??D7~D0引腳:轉換所得8位數據在這8個管腳上輸出,D7是最高位,D0是最低位。
??UCC:電源正極輸入端,接 5 V。
??GND:地端,電源負極接至該端。
??UREF( )和UREF(-):分別為基準電壓UREF的高電平端和低電平端。
ADC的主要技術參數
(1)分辨率
??A/D的分辨率是使A/D輸出數字量最低位變化1所對應的輸入模擬電壓變化的大小值。分辨率也用輸出二進制數的位數來表示,如8位A/D的分辨率就是8,位數越多,誤差越小,轉換精度也越高。
??(2)量化誤差
??用數字量近似表示模擬量的過程稱為量化。A/D轉換一般是按四舍五入原則進行的,由此產生的誤差稱為量化誤差,量化誤差小于等于1LSB。
??(3)精度
??精度分為絕對精度和相對精度。
??在一個A/D中,任何數碼所對應的實際模擬電壓與其理想的電壓之差并不是一個常數,把差值中的最大值定義為該A/D的絕對精度;而相對精度則定義為這個最大差值與滿刻度模擬電壓的百分數,或者用二進制分數來表示相對應的數字量。
??(4)轉換時間
??轉換時間是完成一次A/D轉換所需要的時間,這是指從啟動A/D轉換器開始到獲得相應數據所需要的總時間。
ADC關鍵性能指標及誤區
??由于ADC產品相對于網絡產品和服務器需求小很多,用戶和集成商在選擇產品時對關鍵指標的理解難免有一些誤區,加之部分主流廠商刻意引導,招標規范往往有不少非關鍵指標作被作為必須符合項。接下來就這些誤區和真正的關鍵指標做一些探討。
??誤區1: CPU數量和主頻。 目前大部分廠商采用了類似的通用CPU架構,但還是可能采用不同廠家的CPU。即使是同一個廠家,也可能是不同系列。最關鍵的是CPU數量和主頻并不代表 性能,除非是同一個廠家的同一個軟件。同樣,完全相同的硬件配置,不同廠商的架構和系統發揮出來的性能可能相差數倍,正如完全相同的幾個人在不同的管理環 境下發揮出來的貢獻差別會很大。并行計算處理不好,由于CPU間信開銷及鎖的問題,CPU數量增加并不意味性能增加。如果1個CPU可以跑出其它產品8個 cpu的性能,誰會選擇8個CPU的產品?成本,功耗,體積都會大很多。因此,CPU硬件配置并不代表性能。
??誤區2: 內存。 同樣與系統架構相關。同樣與架構有關,對于CPU獨享內存的架構,每個核即使只配置2G內存,一個8核的產品就需要16G內存,但每個核可訪問的內存資源 只有2G。這樣的架構一份數據需要復制多次并保存多份,使用效率很低,最終也會影響到性能。而共享內存架構的產品,每個核可以訪問所有內存資源,數據也只 需要保存一份。如果是32位操作系統,共享內存架構4G內存的實際效率就超過獨享內存架構的任意配置產品(目前A10之外的產品均為32位操作系統,獨享 內存架構)。64位操作系統突破4G的限制,實際效率就會更高。因此,內存不代表性能。如果一定要比較,需要比較每個核可訪問的內存資源。
??誤區3:端口數量。ADC產品不同于2/3層交換機,端口數量代表可連接更多設備。ADC產品部署環境一定會有2/3層交換機,服務器不需要直接連接到ADC產品。只要端口數量大于實際需要的吞吐量并有足夠端口與交換機連接即可。
??誤區4:交換能力。 這個指標也是沿用了交換機的指標。交換機性能與交換矩陣芯片交換能力密切相關,與CPU關系不是很大。而ADC產品則不同,交換矩陣并不是必須部件,大多 產品采用通用CPU架構使用PCIe總線擴展接口,這部分已經不是ADC產品的瓶頸所在。ADC性能基本取決于系統整體架構下CPU發揮出來的效率。而且 大部分產品本身已經是服務器的硬件架構,應該沒有人對服務器要求交換能力的指標。
??可以看出,誤區所在均為沿用了服務器或交換機的一些指標,這些硬件配置并不代表ADC產品的真正性能,但一些廠商還是刻意利用這些指標(尤其是CPU和內存)來誤導客戶屏蔽競爭對手。ADC真正關鍵的性能指標如下。
??1. 4/7層吞吐量。由于需要CPU進行復雜的4-7層處理,4/7層吞吐量交2/3層吞吐量要低很多,但這是ADC真正能處理的數據吞吐量。這也是2/3層 吞吐量對于ADC產品并不關鍵的原因。這個指標的測試方式通常是發送盡可能多HTTP GET請求,服務器應答較大HTTP對象(如512Kbytes或1MBytes,會分為若干數據包傳輸),計算無失敗情況下線路上傳輸的數據量。差異在 于不同儀表廠商或不同測試可能會不計算2/3層包頭或GET請求部分,由于這部分所占比例極小,影響不是很大。嚴格來說,橫向比較時應該確定所取HTTP 對象大小及是否計算2/3層包頭部分。
??2. 4層每秒新建連接速率(L4 CPS)。 衡量ADC產品每秒鐘可以處理多少個TCP新建連接。通常測試方法為發送盡可能多的HTTP GET請求,服務器應答較小HTTP對象(如1Bytes,128Bytes,1KBytes), ADC產品在中間只根據4層信息進行復雜均衡。每個連接需要完整的3次握手建立過程,GET請求,和TCP關閉連接過程。這個指標對于ADC產品應付突發 大量連接非常重要。好比一個地鐵入口的通過率一樣,如果入口太小,客流突然增加時,如果客人無法進入,業務自然會受到影響。比較該指標時需要注意所取 HTTP對象大小。
??3. 7層每秒新建連接速率(L7 CPS)。與4層新建連接速率類似,只是ADC產品在中間需要根據應用層信息進行服務器選擇(通常測試使用url交換),而且每個TCP連接上只能傳輸1 個HTTP請求。使用7層處理對CPU效率要求更高。如同進入地鐵時需要核查客人更多信息和安檢一樣,其通過率比正常通過率會有不同程度降低。A10產品 通常可以做到4層新建連接速率的70-80%,而其它很多廠商只能做到30-40%。比較該指標時同樣要注意HTTP對象大小和每個TCP連接傳輸的請求 數。
下載該資料的人也在下載
下載該資料的人還在閱讀
更多 >
- ADS1110精密、連續自校準模數轉換器(ADC)英文手冊 0次下載
- ADC122S625模數轉換器(ADC)數據表
- ADC12130、ADC12132和ADC12138模數轉換器數據表
- ADC0808/ADC0809模數轉換器數據表
- ADC09xJ800-Q1模數轉換器(ADC)數據表
- AD4112模數轉換器(ADC)手冊
- AD4111模數轉換器(ADC)手冊
- 高速模數轉換器ADC基礎知識 4次下載
- 基于ADC121C021的Grove模數轉換器原理圖PCB使用教程.
- 開關電源(DC-DC轉換器)真的會降低模數轉換器的性能嗎?資料下載
- ADC0809模數轉換器的使用源代碼免費下載 14次下載
- 模數轉換器ADC的應用和函數定義等資料說明 19次下載
- 使用ADC模數轉換器制作太陽能蓄能灌溉器的程序資料免費下載 5次下載
- 數模和模數轉換器 0次下載
- Proteus之模數轉換器的應用 0次下載
- RA6T2的16位模數轉換器操作 [11] 配置RA6T2 ADC模塊 (8) 177次閱讀
- 模數轉換器的技術參數詳解 909次閱讀
- 模數轉換器的工作原理、分類及應用 816次閱讀
- RA6T2的16位模數轉換器操作 [10] 配置RA6T2 ADC模塊 (7) 186次閱讀
- Σ-Δ模數轉換器(ADC)技術一覽 928次閱讀
- RA6T2的16位模數轉換器操作 [4] 配置RA6T2 ADC模塊 (1) 213次閱讀
- ADC模數轉換器的延時原理 766次閱讀
- 模數轉換器分類_模數轉換器選型 5571次閱讀
- 如何降低模數轉換器的性能 3990次閱讀
- 關于高速ADC模數轉換器精度問題 9445次閱讀
- 模數轉換器的工作原理與分類特點詳解 4452次閱讀
- 小白必看:模數轉換器應用典型電路設計詳細解析 2.2w次閱讀
- 模數轉換器工作原理、類型及主要技術指標 2w次閱讀
- 模數轉換器的基本原理及不同類型ADC特點 3.3w次閱讀
- 高速模數轉換器的轉換誤差率解密 2101次閱讀
下載排行
本周
- 1普中科技HC6800-EM3使用操作手冊
- 21.69 MB | 3次下載 | 2 積分
- 2PCB板EMC/EMI的設計技巧
- 0.20 MB | 3次下載 | 免費
- 32024PMIC市場洞察
- 2.23 MB | 2次下載 | 免費
- 4MSP430?閃存器件引導加載程序(BSL)
- 1.45MB | 2次下載 | 免費
- 5PL4807單節鋰離子電池充電器中文手冊
- 1.36 MB | 2次下載 | 免費
- 6LTH7充電電路和鋰電池升壓5V輸出電路原理圖
- 0.04 MB | 1次下載 | 免費
- 7HT2120兩節鋰電池保護板電路
- 0.22 MB | 1次下載 | 免費
- 8BQ77207EVM用戶指南
- 865.23KB | 1次下載 | 免費
本月
- 1XL4015+LM358恒壓恒流電路圖
- 0.38 MB | 148次下載 | 1 積分
- 2PCB布線和布局電路設計規則
- 0.40 MB | 33次下載 | 免費
- 3智能門鎖原理圖
- 0.39 MB | 13次下載 | 免費
- 4GB/T4706.1-2024 家用和類似用途電器的安全第1部分:通用要求
- 7.43 MB | 11次下載 | 1 積分
- 5JESD79-5C_v1.30-2024 內存技術規范
- 2.71 MB | 10次下載 | 免費
- 6elmo直線電機驅動調試細則
- 4.76 MB | 9次下載 | 6 積分
- 7WIFI智能音箱原理圖完整版
- 0.09 MB | 7次下載 | 10 積分
- 8PC1013三合一快充數據線充電芯片介紹
- 1.03 MB | 7次下載 | 免費
總榜
- 1matlab軟件下載入口
- 未知 | 935115次下載 | 10 積分
- 2開源硬件-PMP21529.1-4 開關降壓/升壓雙向直流/直流轉換器 PCB layout 設計
- 1.48MB | 420061次下載 | 10 積分
- 3Altium DXP2002下載入口
- 未知 | 233084次下載 | 10 積分
- 4電路仿真軟件multisim 10.0免費下載
- 340992 | 191367次下載 | 10 積分
- 5十天學會AVR單片機與C語言視頻教程 下載
- 158M | 183332次下載 | 10 積分
- 6labview8.5下載
- 未知 | 81581次下載 | 10 積分
- 7Keil工具MDK-Arm免費下載
- 0.02 MB | 73806次下載 | 10 積分
- 8LabVIEW 8.6下載
- 未知 | 65985次下載 | 10 積分
評論
查看更多