色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>人工智能>一文詳談機器學(xué)習(xí)的強化學(xué)習(xí)

一文詳談機器學(xué)習(xí)的強化學(xué)習(xí)

收藏

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

評論

查看更多

相關(guān)推薦

使用Isaac Gym 來強化學(xué)習(xí)mycobot 抓取任務(wù)

使用Isaac Gym來強化學(xué)習(xí)mycobot抓取任務(wù)
2023-04-11 14:57:125344

什么是深度強化學(xué)習(xí)?深度強化學(xué)習(xí)算法應(yīng)用分析

什么是深度強化學(xué)習(xí)? 眾所周知,人類擅長解決各種挑戰(zhàn)性的問題,從低級的運動控制(如:步行、跑步、打網(wǎng)球)到高級的認(rèn)知任務(wù)。
2023-07-01 10:29:501002

楊強教授:從機器學(xué)習(xí)到遷移學(xué)習(xí)

楊強教授認(rèn)為,DeepMind把端到端的深度學(xué)習(xí)應(yīng)用在強化學(xué)習(xí)上,使得強化學(xué)習(xí)能夠應(yīng)付大數(shù)據(jù),因此能在圍棋上把人類完全擊倒,它做到這樣是通過完全的自學(xué)習(xí)、自我修煉、自我改正,然后一個一個迭代。楊強還指出,搜索和學(xué)習(xí)的結(jié)合才是人工智能的發(fā)展方向。未來,遷移學(xué)習(xí)會是這個問題的解決途徑。
2016-04-29 14:44:466041

Facebook推出ReAgent AI強化學(xué)習(xí)工具包

Facebook近日推出ReAgent強化學(xué)習(xí)(reinforcement learning)工具包,首次通過收集離線反饋(offline feedback)來實現(xiàn)策略評估(policy evaluation)。
2019-10-19 09:38:411347

機器學(xué)習(xí)工程師必知的10大算法

`轉(zhuǎn)篇好資料機器學(xué)習(xí)算法可以分為三大類:監(jiān)督學(xué)習(xí)、無監(jiān)督學(xué)習(xí)強化學(xué)習(xí)。監(jiān)督學(xué)習(xí)可用于個特定的數(shù)據(jù)集(訓(xùn)練集)具有某屬性(標(biāo)簽),但是其他數(shù)據(jù)沒有標(biāo)簽或者需要預(yù)測標(biāo)簽的情況。無監(jiān)督學(xué)習(xí)可用
2017-04-18 18:28:36

機器學(xué)習(xí)的未來

機器學(xué)習(xí)的未來在工業(yè)領(lǐng)域采用機器學(xué)習(xí)機器學(xué)習(xí)和大數(shù)據(jù)
2021-01-27 06:02:18

【下載】《機器學(xué)習(xí)》+《機器學(xué)習(xí)實戰(zhàn)》

強化學(xué)習(xí)等.下載鏈接:[hide][/hide]2.機器學(xué)習(xí)實戰(zhàn)簡介:機器學(xué)習(xí)是人工智能研究領(lǐng)域中個極其重要的研究方向,在現(xiàn)今的大數(shù)據(jù)時代背景下,捕獲數(shù)據(jù)并從中萃取有價值的信息或模式,成為各行業(yè)求生存
2017-06-01 15:49:24

反向強化學(xué)習(xí)的思路

強化學(xué)習(xí)的另種策略(二)
2019-04-03 12:10:44

最值得學(xué)習(xí)機器學(xué)習(xí)編程語言

如果你對人工智能和機器學(xué)習(xí)感興趣,而且正在積極地規(guī)劃著自己的程序員職業(yè)生涯,那么你肯定面臨著個問題:你應(yīng)該學(xué)習(xí)哪些編程語言,才能真正了解并掌握 AI 和機器學(xué)習(xí)?可供選擇的語言很多,你需要通過戰(zhàn)略
2021-03-02 06:22:38

深度學(xué)習(xí)DeepLearning實戰(zhàn)

:深度學(xué)習(xí)DeepLearning實戰(zhàn)時間地點:1 月 15日— 1 月18 日二:深度強化學(xué)習(xí)核心技術(shù)實戰(zhàn)時間地點: 1 月 27 日— 1 月30 日(第天報到 授課三天;提前環(huán)境部署 電腦
2021-01-09 17:01:54

深度學(xué)習(xí)技術(shù)的開發(fā)與應(yīng)用

深度策略梯度-DDPG,PPO等第天9:00-12:0014:00-17:00強化學(xué)習(xí)概述1.強化學(xué)習(xí)介紹 2.強化學(xué)習(xí)與其它機器學(xué)習(xí)的不同3.強化學(xué)習(xí)發(fā)展歷史4.強化學(xué)習(xí)典型應(yīng)用5.強化學(xué)習(xí)
2022-04-21 14:57:39

深度強化學(xué)習(xí)實戰(zhàn)

:深度學(xué)習(xí)DeepLearning實戰(zhàn)時間地點:1 月 15日— 1 月18 日二:深度強化學(xué)習(xí)核心技術(shù)實戰(zhàn)時間地點: 1 月 27 日— 1 月30 日(第天報到 授課三天;提前環(huán)境部署 電腦
2021-01-10 13:42:26

#硬聲創(chuàng)作季 機器學(xué)習(xí):第13章:強化學(xué)習(xí)

化學(xué)機器學(xué)習(xí)
Mr_haohao發(fā)布于 2022-10-25 23:38:27

基于強化學(xué)習(xí)的飛行自動駕駛儀設(shè)計

針對強化學(xué)習(xí)在連續(xù)狀態(tài)連續(xù)動作空間中的維度災(zāi)難問題,利用BP神經(jīng)網(wǎng)絡(luò)算法作為值函數(shù)逼近策略,設(shè)計了自動駕駛儀。并引入動作池機制,有效避免飛行仿真中危險動作的發(fā)生。首先
2013-06-25 16:27:2227

45. 5 2 強化學(xué)習(xí)(深度強化學(xué)習(xí)) #硬聲創(chuàng)作季

機器學(xué)習(xí)
充八萬發(fā)布于 2023-07-07 01:56:26

強化學(xué)習(xí)在RoboCup帶球任務(wù)中的應(yīng)用劉飛

強化學(xué)習(xí)在RoboCup帶球任務(wù)中的應(yīng)用_劉飛
2017-03-14 08:00:000

將深度學(xué)習(xí)強化學(xué)習(xí)和遷移學(xué)習(xí)有機結(jié)合的研究

界聲譽卓著。在此前接受CSDN采訪時,楊強介紹了他目前的主要工作致力于一個將深度學(xué)習(xí)強化學(xué)習(xí)和遷移學(xué)習(xí)有機結(jié)合的Reinforcement Transfer Learning(RTL)體系的研究。那么,這個技術(shù)框架對工業(yè)界的實際應(yīng)用有什么用的實際意義?在本文中,CSDN結(jié)合楊強的另外一個身份國內(nèi)人工智能創(chuàng)業(yè)
2017-10-09 18:23:180

谷歌帶你體驗一把什么是機器學(xué)習(xí)

機器學(xué)習(xí)的本質(zhì)是模式識別。 一部分可以用于預(yù)測(有監(jiān)督學(xué)習(xí),無監(jiān)督學(xué)習(xí)),另一類直接用于決策(強化學(xué)習(xí)),機器學(xué)習(xí)的一個核心任務(wù)即模式識別, 我們通常可以用模式識別來對我們未來研究的系統(tǒng)進行歸類, 并預(yù)測各種可能的未來結(jié)果。
2017-10-13 10:56:431626

深度強化學(xué)習(xí)是什么?有什么優(yōu)點?

與監(jiān)督機器學(xué)習(xí)不同,在強化學(xué)習(xí)中,研究人員通過讓一個代理與環(huán)境交互來訓(xùn)練模型。當(dāng)代理的行為產(chǎn)生期望的結(jié)果時,它得到正反饋。例如,代理人獲得一個點數(shù)或贏得一場比賽的獎勵。簡單地說,研究人員加強了代理人的良好行為。
2018-07-13 09:33:0024321

將深度學(xué)習(xí)強化學(xué)習(xí)相結(jié)合的深度強化學(xué)習(xí)DRL

深度強化學(xué)習(xí)DRL自提出以來, 已在理論和應(yīng)用方面均取得了顯著的成果。尤其是谷歌DeepMind團隊基于深度強化學(xué)習(xí)DRL研發(fā)的AlphaGo,將深度強化學(xué)習(xí)DRL成推上新的熱點和高度,成為人工智能歷史上一個新的里程碑。因此,深度強化學(xué)習(xí)DRL非常值得研究。
2018-06-29 18:36:0027596

人工智能強化學(xué)習(xí)的原理和目標(biāo)

通俗的講,就是當(dāng)一個小孩學(xué)習(xí)有迷茫或困惑時,如果老師發(fā)現(xiàn)小孩方法或思路正確,就給他(她)正反饋(獎勵或鼓勵);否則就給他(她)負(fù)反饋(教訓(xùn)或懲罰),激勵小孩的潛能,強化他(她)自我學(xué)習(xí)能力,依靠自身的力量來主動學(xué)習(xí)和不斷探索,最終讓他(她)找到正確的方法或思路,以適應(yīng)外部多變的環(huán)境。
2018-06-26 08:47:004323

薩頓科普了強化學(xué)習(xí)、深度強化學(xué)習(xí),并談到了這項技術(shù)的潛力和發(fā)展方向

薩頓在專訪中(再次)科普了強化學(xué)習(xí)、深度強化學(xué)習(xí),并談到了這項技術(shù)的潛力,以及接下來的發(fā)展方向:預(yù)測學(xué)習(xí)
2017-12-27 09:07:1510857

基于分層強化學(xué)習(xí)的多Agent路徑規(guī)劃

針對路徑規(guī)劃算法收斂速度慢及效率低的問題,提出了一種基于分層強化學(xué)習(xí)及人工勢場的多Agent路徑規(guī)劃算法。首先,將多Agent的運行環(huán)境虛擬為一個人工勢能場,根據(jù)先驗知識確定每點的勢能值,它代表最優(yōu)
2017-12-27 14:32:020

基于LCS和LS-SVM的多機器強化學(xué)習(xí)

本文提出了一種LCS和LS-SVM相結(jié)合的多機器強化學(xué)習(xí)方法,LS-SVM獲得的最優(yōu)學(xué)習(xí)策略作為LCS的初始規(guī)則集。LCS通過與環(huán)境的交互,能更快發(fā)現(xiàn)指導(dǎo)多機器強化學(xué)習(xí)的規(guī)則,為強化學(xué)習(xí)系統(tǒng)
2018-01-09 14:43:490

強化學(xué)習(xí)的風(fēng)儲合作決策

在風(fēng)儲配置給定前提下,研究風(fēng)電與儲能系統(tǒng)如何有機合作的問題。核心在于風(fēng)電與儲能組成混合系統(tǒng)參與電力交易,通過合作提升其市場競爭的能力。針對現(xiàn)有研究的不足,在具有過程化樣本的前提下,引入強化學(xué)習(xí)算法
2018-01-27 10:20:502

如何深度強化學(xué)習(xí) 人工智能和深度學(xué)習(xí)的進階

傳統(tǒng)上,強化學(xué)習(xí)在人工智能領(lǐng)域占據(jù)著一個合適的地位。但強化學(xué)習(xí)在過去幾年已開始在很多人工智能計劃中發(fā)揮更大的作用。
2018-03-03 14:16:563924

【重磅】DeepMind發(fā)布通用強化學(xué)習(xí)新范式,自主機器人可學(xué)會任何任務(wù)

SAC-X是一種通用的強化學(xué)習(xí)方法,未來可以應(yīng)用于機器人以外的更廣泛領(lǐng)域
2018-03-19 14:45:481746

簡單隨機搜索:無模型強化學(xué)習(xí)的高效途徑

讓我們在強化學(xué)習(xí)社區(qū)感興趣的問題上應(yīng)用隨機搜索。深度強化學(xué)習(xí)領(lǐng)域一直把大量時間和精力用于由OpenAI維護的、基于MuJoCo模擬器的一套基準(zhǔn)測試中。這里,最優(yōu)控制問題指的是讓一個有腿機器
2018-04-01 09:35:004193

強化學(xué)習(xí)新方法,機器人究竟是怎么學(xué)習(xí)新動作的呢?

強化學(xué)習(xí)方法教機器人(模擬器里的智能體),能學(xué)會的動作花樣繁多,細(xì)致到拿東西、豪放到奔跑都能搞定,還可以給機器人設(shè)置一個明確的目的。但是,總難免上演一些羞恥或驚喜play。
2018-04-13 11:00:329514

強化學(xué)習(xí)究竟是什么?它與機器學(xué)習(xí)技術(shù)有什么聯(lián)系?

Q-learning和SARSA是兩種最常見的不理解環(huán)境強化學(xué)習(xí)算法,這兩者的探索原理不同,但是開發(fā)原理是相似的。Q-learning是一種離線學(xué)習(xí)算法,智能體需要從另一項方案中學(xué)習(xí)到行為a*的價值
2018-04-15 10:32:2212973

人工智能機器學(xué)習(xí)強化學(xué)習(xí)

強化學(xué)習(xí)是智能系統(tǒng)從環(huán)境到行為映射的學(xué)習(xí),以使獎勵信號(強化信號)函數(shù)值最大,強化學(xué)習(xí)不同于連接主義學(xué)習(xí)中的監(jiān)督學(xué)習(xí),主要表現(xiàn)在教師信號上,強化學(xué)習(xí)中由環(huán)境提供的強化信號是對產(chǎn)生動作的好壞作一種評價
2018-05-30 06:53:001234

利用強化學(xué)習(xí)探索多巴胺對學(xué)習(xí)的作用

當(dāng)我們使用虛擬的計算機屏幕和隨機選擇的圖像來模擬一個非常相似的測試時,我們發(fā)現(xiàn),我們的“元強化學(xué)習(xí)智能體”(meta-RL agent)似乎是以類似于Harlow實驗中的動物的方式在學(xué)習(xí),甚至在被顯示以前從未見過的全新圖像時也是如此。
2018-05-16 09:03:394475

強化學(xué)習(xí)在自動駕駛的應(yīng)用

自動駕駛汽車首先是人工智能問題,而強化學(xué)習(xí)機器學(xué)習(xí)的一個重要分支,是多學(xué)科多領(lǐng)域交叉的一個產(chǎn)物。今天人工智能頭條給大家介紹強化學(xué)習(xí)在自動駕駛的一個應(yīng)用案例,無需3D地圖也無需規(guī)則,讓汽車從零開始在二十分鐘內(nèi)學(xué)會自動駕駛。
2018-07-10 09:00:294676

AI核心領(lǐng)域——強化學(xué)習(xí)的缺陷

前段時間,OpenAI的游戲機器人在Dota2的比賽中贏了人類的5人小組,取得了團隊勝利,是強化學(xué)習(xí)攻克的又一游戲里程碑。
2018-07-13 08:56:014439

強化學(xué)習(xí)的經(jīng)典基礎(chǔ)性缺陷可能限制它解決很多復(fù)雜問題

這些都是除了從零學(xué)習(xí)之外的強化學(xué)習(xí)方法。特別是元學(xué)習(xí)和零次學(xué)習(xí)體現(xiàn)了人在學(xué)習(xí)一種新技能時更有可能的做法,與純強化學(xué)習(xí)有差別。一個元學(xué)習(xí)智能體會利用先驗知識快速學(xué)習(xí)棋類游戲,盡管它不明白游戲規(guī)則
2018-07-14 08:42:287602

什么是強化學(xué)習(xí)?純強化學(xué)習(xí)有意義嗎?強化學(xué)習(xí)有什么的致命缺陷?

強化學(xué)習(xí)是人工智能基本的子領(lǐng)域之一,在強化學(xué)習(xí)的框架中,智能體通過與環(huán)境互動,來學(xué)習(xí)采取何種動作能使其在給定環(huán)境中的長期獎勵最大化,就像在上述的棋盤游戲寓言中,你通過與棋盤的互動來學(xué)習(xí)
2018-07-15 10:56:3717106

強化學(xué)習(xí)泡沫之后,人工智能的終極答案是什么?

結(jié)合 DL 與 RL 的深度強化學(xué)習(xí)(Deep Reinforcement Learning, DRL)迅速成為人工智能界的焦點。
2018-08-09 10:12:435789

強化學(xué)習(xí)環(huán)境研究,智能體玩游戲為什么厲害

強化學(xué)習(xí)作為一種常用的訓(xùn)練智能體的方法,能夠完成很多復(fù)雜的任務(wù)。在強化學(xué)習(xí)中,智能體的策略是通過將獎勵函數(shù)最大化訓(xùn)練的。獎勵在智能體之外,各個環(huán)境中的獎勵各不相同。深度學(xué)習(xí)的成功大多是有密集并且有效的獎勵函數(shù),例如電子游戲中不斷增加的“分?jǐn)?shù)”。
2018-08-18 11:38:573363

強化學(xué)習(xí)和監(jiān)督式學(xué)習(xí), 非監(jiān)督式學(xué)習(xí)的區(qū)別

而這時,強化學(xué)習(xí)會在沒有任何標(biāo)簽的情況下,通過先嘗試做出一些行為得到一個結(jié)果,通過這個結(jié)果是對還是錯的反饋,調(diào)整之前的行為,就這樣不斷的調(diào)整,算法能夠學(xué)習(xí)到在什么樣的情況下選擇什么樣的行為可以得到最好的結(jié)果。
2018-08-21 09:18:2519123

谷歌推出新的基于Tensorflow的強化學(xué)習(xí)框架,稱為Dopamine

強化學(xué)習(xí)(RL)研究在過去幾年取得了許多重大進展。強化學(xué)習(xí)的進步使得 AI 智能體能夠在一些游戲上超過人類,值得關(guān)注的例子包括 DeepMind 攻破 Atari 游戲的 DQN,在圍棋中獲得矚目的 AlphaGo 和 AlphaGo Zero,以及在 Dota2 對戰(zhàn)人類職業(yè)玩家的Open AI Five。
2018-08-31 09:20:493498

Google強化學(xué)習(xí)框架,要滿足哪三大特性

強化學(xué)習(xí)是一種非常重要 AI 技術(shù),它能使用獎勵(或懲罰)來驅(qū)動智能體(agents)朝著特定目標(biāo)前進,比如它訓(xùn)練的 AI 系統(tǒng) AlphaGo 擊敗了頂尖圍棋選手,它也是 DeepMind 的深度
2018-09-03 14:06:302653

基于目標(biāo)圖像的視覺強化學(xué)習(xí)算法,讓機器人可以同時學(xué)習(xí)多個任務(wù)

強化學(xué)習(xí)是一種訓(xùn)練主體最大化獎勵的學(xué)習(xí)機制,對于目標(biāo)條件下的強化學(xué)習(xí)來說可以將獎勵函數(shù)設(shè)為當(dāng)前狀態(tài)與目標(biāo)狀態(tài)之間距離的反比函數(shù),那么最大化獎勵就對應(yīng)著最小化與目標(biāo)函數(shù)的距離。
2018-09-24 10:11:006779

用PopArt進行多任務(wù)深度強化學(xué)習(xí)

按照以往的做法,如果研究人員要用強化學(xué)習(xí)算法對獎勵進行剪枝,以此克服獎勵范圍各不相同的問題,他們首先會把大的獎勵設(shè)為+1,小的獎勵為-1,然后對預(yù)期獎勵做歸一化處理。雖然這種做法易于學(xué)習(xí),但它也改變了智能體的目標(biāo)。
2018-09-16 09:32:035336

AlphaGo首席研究員談強化學(xué)習(xí)十大黃金法則!

Silver的演講中提出的強化學(xué)習(xí)10大要點涵蓋涉及算法評估、狀態(tài)控制、建模函數(shù)等方面的心得和建議,非常值得開發(fā)者和機器學(xué)習(xí)愛好者參考學(xué)習(xí)。一起看看他是怎么說的吧!
2018-09-17 08:41:193067

基于強化學(xué)習(xí)的MADDPG算法原理及實現(xiàn)

之前接觸的強化學(xué)習(xí)算法都是單個智能體的強化學(xué)習(xí)算法,但是也有很多重要的應(yīng)用場景牽涉到多個智能體之間的交互。
2018-11-02 16:18:1521017

如何構(gòu)建強化學(xué)習(xí)模型來訓(xùn)練無人車算法

本文作者通過簡單的方式構(gòu)建了強化學(xué)習(xí)模型來訓(xùn)練無人車算法,可以為初學(xué)者提供快速入門的經(jīng)驗。
2018-11-12 14:47:394570

量化深度強化學(xué)習(xí)算法的泛化能力

OpenAI 近期發(fā)布了一個新的訓(xùn)練環(huán)境 CoinRun,它提供了一個度量智能體將其學(xué)習(xí)經(jīng)驗活學(xué)活用到新情況的能力指標(biāo),而且還可以解決一項長期存在于強化學(xué)習(xí)中的疑難問題——即使是廣受贊譽的強化算法在訓(xùn)練過程中也總是沒有運用監(jiān)督學(xué)習(xí)的技術(shù)。
2019-01-01 09:22:002122

如何測試強化學(xué)習(xí)智能體適應(yīng)性

強化學(xué)習(xí)(RL)能通過獎勵或懲罰使智能體實現(xiàn)目標(biāo),并將它們學(xué)習(xí)到的經(jīng)驗轉(zhuǎn)移到新環(huán)境中。
2018-12-24 09:29:562949

深度強化學(xué)習(xí)能讓機器人擁有人一樣的意識

了一種人工智能系統(tǒng),即通過深度強化學(xué)習(xí)學(xué)習(xí)走路,簡單來說,就是教“一個四足機器人來穿越熟悉和不熟悉的地形”。
2019-01-03 09:50:133286

對NAS任務(wù)中強化學(xué)習(xí)的效率進行深入思考

在一些情況下,我們會用策略函數(shù)(policy, 總得分,也就是搭建的網(wǎng)絡(luò)在測試集上的精度(accuracy),通過強化學(xué)習(xí)(Reinforcement Learning)這種通用黑盒算法來優(yōu)化。然而,因為強化學(xué)習(xí)本身具有數(shù)據(jù)利用率低的特點,這個優(yōu)化的過程往往需要大量的計算資源。
2019-01-28 09:54:224705

谷歌、DeepMind重磅推出PlaNet 強化學(xué)習(xí)新突破

Google AI 與 DeepMind 合作推出深度規(guī)劃網(wǎng)絡(luò) (PlaNet),這是一個純粹基于模型的智能體,能從圖像輸入中學(xué)習(xí)世界模型,完成多項規(guī)劃任務(wù),數(shù)據(jù)效率平均提升50倍,強化學(xué)習(xí)又一突破。
2019-02-17 09:30:283036

利用強化學(xué)習(xí)來更好地進行商品搜索的項目

強化學(xué)習(xí) (IRL) 方法從數(shù)據(jù)中學(xué)習(xí)一個獎勵函數(shù),然后根據(jù)這個獎勵函數(shù)訓(xùn)練一個策略。IRL 放松了數(shù)據(jù)的 i.i.d. 假設(shè),但仍然假設(shè)環(huán)境是靜態(tài)的。當(dāng)環(huán)境 (即淘寶平臺) 發(fā)生變化時,學(xué)習(xí)策略可能會失敗。上述問題使得這些方法在構(gòu)建虛擬淘寶時不太實用。
2019-03-05 09:06:523726

深度強化學(xué)習(xí)是否已經(jīng)到達(dá)盡頭?

近日,Reddit一位網(wǎng)友根據(jù)近期OpenAI Five、AlphaStar的表現(xiàn),提出“深度強化學(xué)習(xí)是否已經(jīng)到達(dá)盡頭”的問題。
2019-05-10 16:34:592313

開辟新篇章!谷歌機器學(xué)習(xí)又有新進展!

在谷歌最新的論文中,研究人員提出了“非政策強化學(xué)習(xí)”算法OPC,它是強化學(xué)習(xí)的一種變體,它能夠評估哪種機器學(xué)習(xí)模型將產(chǎn)生最好的結(jié)果。
2019-06-22 11:16:292280

谷歌發(fā)布非政策強化學(xué)習(xí)算法OPC的最新研究機器學(xué)習(xí)即將開辟新篇章?

在谷歌最新的論文中,研究人員提出了“非政策強化學(xué)習(xí)”算法OPC,它是強化學(xué)習(xí)的一種變體,它能夠評估哪種機器學(xué)習(xí)模型將產(chǎn)生最好的結(jié)果。數(shù)據(jù)顯示,OPC比基線機器學(xué)習(xí)算法有著顯著的提高,更加穩(wěn)健可靠。
2019-06-22 11:17:083374

強化學(xué)習(xí)應(yīng)用中對話系統(tǒng)的用戶模擬器

近幾年來,強化學(xué)習(xí)在任務(wù)導(dǎo)向型對話系統(tǒng)中得到了廣泛的應(yīng)用,對話系統(tǒng)通常被統(tǒng)計建模成為一個 馬爾科夫決策過程(Markov Decision Process)模型,通過隨機優(yōu)化的方法來學(xué)習(xí)對話策略。
2019-08-06 14:16:291836

深度強化學(xué)習(xí)你知道是什么嗎

強化學(xué)習(xí)非常適合實現(xiàn)自主決策,相比之下監(jiān)督學(xué)習(xí)與無監(jiān)督學(xué)習(xí)技術(shù)則無法獨立完成此項工作。
2019-12-10 14:34:571092

懶惰強化學(xué)習(xí)算法在發(fā)電調(diào)控REG框架的應(yīng)用

惰性是人類的天性,然而惰性能讓人類無需過于復(fù)雜的練習(xí)就能學(xué)習(xí)某項技能,對于人工智能而言,是否可有基于惰性的快速學(xué)習(xí)的方法?本文提出一種懶惰強化學(xué)習(xí)(Lazy reinforcement learning, LRL) 算法。
2020-01-16 17:40:00745

深度強化學(xué)習(xí)的筆記資料免費下載

本文檔的主要內(nèi)容詳細(xì)介紹的是深度強化學(xué)習(xí)的筆記資料免費下載。
2020-03-10 08:00:000

谷歌發(fā)明自主學(xué)習(xí)機器人 結(jié)合了深度學(xué)習(xí)強化學(xué)習(xí)兩種類型的技術(shù)

)的研究人員聯(lián)合發(fā)表了一篇論文,詳細(xì)介紹了他們構(gòu)建的一個通過 AI 技術(shù)自學(xué)走路的機器人。該機器人結(jié)合了深度學(xué)習(xí)強化學(xué)習(xí)兩種不同類型的 AI 技術(shù),具備直接放置于真實環(huán)境中進行訓(xùn)練的條件。
2020-03-17 15:15:301354

人工智能的強化學(xué)習(xí)要點

強化學(xué)習(xí)(RL)是現(xiàn)代人工智能領(lǐng)域中最熱門的研究主題之一,其普及度還在不斷增長。 讓我們看一下開始學(xué)習(xí)RL需要了解的5件事。
2020-05-04 18:14:003117

深度強化學(xué)習(xí)的概念和工作原理的詳細(xì)資料說明

深度學(xué)習(xí)DL是機器學(xué)習(xí)中一種基于對數(shù)據(jù)進行表征學(xué)習(xí)的方法。深度學(xué)習(xí)DL有監(jiān)督和非監(jiān)督之分,都已經(jīng)得到廣泛的研究和應(yīng)用。強化學(xué)習(xí)RL是通過對未知環(huán)境一邊探索一邊建立環(huán)境模型以及學(xué)習(xí)得到一個最優(yōu)策略。強化學(xué)習(xí)機器學(xué)習(xí)中一種快速、高效且不可替代的學(xué)習(xí)算法。
2020-05-16 09:20:403150

深度強化學(xué)習(xí)到底是什么?它的工作原理是怎么樣的

深度學(xué)習(xí)DL是機器學(xué)習(xí)中一種基于對數(shù)據(jù)進行表征學(xué)習(xí)的方法。深度學(xué)習(xí)DL有監(jiān)督和非監(jiān)督之分,都已經(jīng)得到廣泛的研究和應(yīng)用。強化學(xué)習(xí)RL是通過對未知環(huán)境一邊探索一邊建立環(huán)境模型以及學(xué)習(xí)得到一個最優(yōu)策略。強化學(xué)習(xí)機器學(xué)習(xí)中一種快速、高效且不可替代的學(xué)習(xí)算法。
2020-06-13 11:39:405529

復(fù)雜應(yīng)用中運用人工智能核心 強化學(xué)習(xí)

近期,有不少報道強化學(xué)習(xí)算法在 GO、Dota 2 和 Starcraft 2 等一系列游戲中打敗了專業(yè)玩家的新聞。強化學(xué)習(xí)是一種機器學(xué)習(xí)類型,能夠在電子游戲、機器人、自動駕駛等復(fù)雜應(yīng)用中運用人工智能。
2020-07-27 08:50:15715

基于PPO強化學(xué)習(xí)算法的AI應(yīng)用案例

Viet Nguyen就是其中一個。這位來自德國的程序員表示自己只玩到了第9個關(guān)卡。因此,他決定利用強化學(xué)習(xí)AI算法來幫他完成未通關(guān)的遺憾。
2020-07-29 09:30:162429

詳談機器學(xué)習(xí)及其三大分類

本節(jié)概述機器學(xué)習(xí)及其三個分類(監(jiān)督學(xué)習(xí)、非監(jiān)督學(xué)習(xí)強化學(xué)習(xí))。首先,與機器學(xué)習(xí)相關(guān)的術(shù)語有人工智能(Artificial Intelligence,AI)、機器學(xué)習(xí)(Machine Learning,ML)、強化學(xué)習(xí)、深度學(xué)習(xí)等,這里對這些術(shù)語進行簡單的整理。
2020-08-14 12:24:4723092

83篇文獻(xiàn)、萬字總結(jié)強化學(xué)習(xí)之路

深度強化學(xué)習(xí)是深度學(xué)習(xí)強化學(xué)習(xí)相結(jié)合的產(chǎn)物,它集成了深度學(xué)習(xí)在視覺等感知問題上強大的理解能力,以及強化學(xué)習(xí)的決策能力,實現(xiàn)了...
2020-12-10 18:32:50374

DeepMind發(fā)布強化學(xué)習(xí)庫RLax

RLax(發(fā)音為“ relax”)是建立在JAX之上的庫,它公開了用于實施強化學(xué)習(xí)智能體的有用構(gòu)建塊。。報道:深度強化學(xué)習(xí)實驗室作者:DeepRL ...
2020-12-10 18:43:23499

強化學(xué)習(xí)在智能對話上的應(yīng)用介紹

本文主要介紹深度強化學(xué)習(xí)在任務(wù)型對話上的應(yīng)用,兩者的結(jié)合點主要是將深度強化學(xué)習(xí)應(yīng)用于任務(wù)型對話的策略學(xué)習(xí)上來源:騰訊技術(shù)工程微信號
2020-12-10 19:02:45781

從五個方面詳談機器學(xué)習(xí)和深度學(xué)習(xí)的區(qū)別

繼系列上一篇 所以,機器學(xué)習(xí)和深度學(xué)習(xí)的區(qū)別是什么?淺談后,今天繼續(xù)深入探討兩者的更多區(qū)別。
2021-03-01 15:44:4215804

機器學(xué)習(xí)中的無模型強化學(xué)習(xí)算法及研究綜述

強化學(xué)習(xí)( Reinforcement learning,RL)作為機器學(xué)習(xí)領(lǐng)域中與監(jiān)督學(xué)習(xí)、無監(jiān)督學(xué)習(xí)并列的第三種學(xué)習(xí)范式,通過與環(huán)境進行交互來學(xué)習(xí),最終將累積收益最大化。常用的強化學(xué)習(xí)算法分為
2021-04-08 11:41:5811

模型化深度強化學(xué)習(xí)應(yīng)用研究綜述

深度強化學(xué)習(xí)(DRL)作為機器學(xué)習(xí)的重要分攴,在 Alphago擊敗人類后受到了廣泛關(guān)注。DRL以種試錯機制與環(huán)境進行交互,并通過最大化累積獎賞最終得到最優(yōu)策略。強化學(xué)習(xí)可分為無模型強化學(xué)習(xí)和模型
2021-04-12 11:01:529

當(dāng)機器人遇見強化學(xué)習(xí),會碰出怎樣的火花?

當(dāng)機器人遇見強化學(xué)習(xí),會碰出怎樣的火花? 一名叫 Cassie 的機器人,給出了生動演繹。 最近,24 歲的中國南昌小伙李鐘毓和其所在團隊,用強化學(xué)習(xí)教 Cassie 走路 ,目前它已學(xué)會蹲伏走路
2021-04-13 09:35:092164

強化學(xué)習(xí)的雙權(quán)重最小二乘Sarsa算法

強化學(xué)習(xí)是人工智能領(lǐng)域中的一個研究熱點。在求解強化學(xué)習(xí)問題時,傳統(tǒng)的最小二乘法作為一類特殊的函數(shù)逼近學(xué)習(xí)方法,具有收斂速度快、充分利用樣本數(shù)據(jù)的優(yōu)勢。通過對最小二乘時序差分算法
2021-04-23 15:03:035

基于深度強化學(xué)習(xí)的路口單交叉信號控制

利用深度強化學(xué)習(xí)技術(shù)實現(xiàn)路口信號控制是智能交通領(lǐng)域的硏究熱點。現(xiàn)有硏究大多利用強化學(xué)習(xí)來全面刻畫交通狀態(tài)以及設(shè)計有效強化學(xué)習(xí)算法以解決信號配時問題,但這些研究往往忽略了信號燈狀態(tài)對動作選擇的影響以及
2021-04-23 15:30:5321

基于強化學(xué)習(xí)的壯語詞標(biāo)注方法

目前壯語智能信息處理研究處于起步階段,缺乏自動詞性標(biāo)注方法。針對壯語標(biāo)注語料匱乏、人工標(biāo)注費時費力而機器標(biāo)注性能較差的現(xiàn)狀,提出一種基于強化學(xué)習(xí)的壯語詞性標(biāo)注方法。依據(jù)壯語的文法特點和中文賓州
2021-05-14 11:29:3514

基于深度強化學(xué)習(xí)仿真集成的壓邊力控制模型

壓邊為改善板料拉深制造的成品質(zhì)量,釆用深度強化學(xué)習(xí)的方法進行拉深過程旳壓邊力優(yōu)化控制。提岀一種基于深度強化學(xué)習(xí)與有限元仿真集成的壓邊力控制模型,結(jié)合深度神經(jīng)網(wǎng)絡(luò)的感知能力與強化學(xué)習(xí)的決策能力,進行
2021-05-27 10:32:390

一種新型的多智能體深度強化學(xué)習(xí)算法

一種新型的多智能體深度強化學(xué)習(xí)算法
2021-06-23 10:42:4736

基于深度強化學(xué)習(xí)的無人機控制律設(shè)計方法

基于深度強化學(xué)習(xí)的無人機控制律設(shè)計方法
2021-06-23 14:59:1046

基于強化學(xué)習(xí)的虛擬場景角色乒乓球訓(xùn)練

基于強化學(xué)習(xí)的虛擬場景角色乒乓球訓(xùn)練
2021-06-27 11:34:3362

使用Matlab進行強化學(xué)習(xí)電子版資源下載

使用Matlab進行強化學(xué)習(xí)電子版資源下載
2021-07-16 11:17:090

《自動化學(xué)報》—多Agent深度強化學(xué)習(xí)綜述

多Agent 深度強化學(xué)習(xí)綜述 來源:《自動化學(xué)報》,作者梁星星等 摘 要?近年來,深度強化學(xué)習(xí)(Deep reinforcement learning,DRL) 在諸多復(fù)雜序貫決策問題中取得巨大
2022-01-18 10:08:011226

Oneflow 實現(xiàn)強化學(xué)習(xí)玩 Flappy Bird 小游戲

本文主要內(nèi)容是如何用Oenflow去復(fù)現(xiàn)強化學(xué)習(xí)玩 Flappy Bird 小游戲這篇論文的算法關(guān)鍵部分,還有記錄復(fù)現(xiàn)過程中一些踩過的坑。
2022-01-26 18:19:342

GTC2022大會黃仁勛:NVIDIA NVCell強化學(xué)習(xí)模型正在執(zhí)行芯片布局

GTC2022大會黃仁勛:NVIDIA NVCell強化學(xué)習(xí)模型正在執(zhí)行芯片布局,具備語言監(jiān)督的多模態(tài)學(xué)習(xí)為計算機視覺開拓了新維度。
2022-03-23 15:23:551720

強化學(xué)習(xí)的基礎(chǔ)知識和6種基本算法解釋

來源:DeepHub IMBA 強化學(xué)習(xí)的基礎(chǔ)知識和概念簡介(無模型、在線學(xué)習(xí)、離線強化學(xué)習(xí)等) 機器學(xué)習(xí)(ML)分為三個分支:監(jiān)督學(xué)習(xí)、無監(jiān)督學(xué)習(xí)強化學(xué)習(xí)。 監(jiān)督學(xué)習(xí)(SL) : 關(guān)注在給
2022-12-20 14:00:02828

ESP32上的深度強化學(xué)習(xí)

電子發(fā)燒友網(wǎng)站提供《ESP32上的深度強化學(xué)習(xí).zip》資料免費下載
2022-12-27 10:31:450

7個流行的強化學(xué)習(xí)算法及代碼實現(xiàn)

作者:Siddhartha Pramanik 來源:DeepHub IMBA 目前流行的強化學(xué)習(xí)算法包括 Q-learning、SARSA、DDPG、A2C、PPO、DQN 和 TRPO。這些算法
2023-02-03 20:15:06747

強化學(xué)習(xí)與智能駕駛決策規(guī)劃

本文介紹了強化學(xué)習(xí)與智能駕駛決策規(guī)劃。智能駕駛中的決策規(guī)劃模塊負(fù)責(zé)將感知模塊所得到的環(huán)境信息轉(zhuǎn)化成具體的駕駛策略,從而指引車輛安全、穩(wěn)定的行駛。真實的駕駛場景往往具有高度的復(fù)雜性及不確定性。如何制定
2023-02-08 14:05:161441

基于多智能體強化學(xué)習(xí)的自主移動機器人實時訂單調(diào)度

訂單調(diào)度,提出了一種使用多agent強化學(xué)習(xí)的方法,其中AMRagent根據(jù)各自的觀察學(xué)習(xí)對訂單進行投標(biāo)。在機器人仿真環(huán)境中研究了該方法。結(jié)果表明,與常用的調(diào)度規(guī)則相比,該算法的訂 單分配效率更高。
2023-04-11 10:59:240

機器學(xué)習(xí)筆記之優(yōu)化-拉格朗日乘子法和對偶分解

優(yōu)化是機器學(xué)習(xí)中的關(guān)鍵步驟。在這個機器學(xué)習(xí)系列中,我們將簡要介紹優(yōu)化問題,然后探討兩種特定的優(yōu)化方法,即拉格朗日乘子和對偶分解。這兩種方法在機器學(xué)習(xí)強化學(xué)習(xí)和圖模型中非常流行。
2023-05-30 16:47:171339

徹底改變算法交易:強化學(xué)習(xí)的力量

強化學(xué)習(xí)(RL)是人工智能的一個子領(lǐng)域,專注于決策過程。與其他形式的機器學(xué)習(xí)相比,強化學(xué)習(xí)模型通過與環(huán)境交互并以獎勵或懲罰的形式接收反饋來學(xué)習(xí)
2023-06-09 09:23:23355

強化學(xué)習(xí)的基礎(chǔ)知識和6種基本算法解釋

來源:DeepHubIMBA強化學(xué)習(xí)的基礎(chǔ)知識和概念簡介(無模型、在線學(xué)習(xí)、離線強化學(xué)習(xí)等)機器學(xué)習(xí)(ML)分為三個分支:監(jiān)督學(xué)習(xí)、無監(jiān)督學(xué)習(xí)強化學(xué)習(xí)。監(jiān)督學(xué)習(xí)(SL):關(guān)注在給定標(biāo)記訓(xùn)練數(shù)據(jù)
2023-01-05 14:54:05419

7個流行的強化學(xué)習(xí)算法及代碼實現(xiàn)

作者:SiddharthaPramanik來源:DeepHubIMBA目前流行的強化學(xué)習(xí)算法包括Q-learning、SARSA、DDPG、A2C、PPO、DQN和TRPO。這些算法已被用于在游戲
2023-02-06 15:06:38665

人工智能強化學(xué)習(xí)開源分享

電子發(fā)燒友網(wǎng)站提供《人工智能強化學(xué)習(xí)開源分享.zip》資料免費下載
2023-06-20 09:27:281

基于強化學(xué)習(xí)的目標(biāo)檢測算法案例

摘要:基于強化學(xué)習(xí)的目標(biāo)檢測算法在檢測過程中通常采用預(yù)定義搜索行為,其產(chǎn)生的候選區(qū)域形狀和尺寸變化單一,導(dǎo)致目標(biāo)檢測精確度較低。為此,在基于深度強化學(xué)習(xí)的視覺目標(biāo)檢測算法基礎(chǔ)上,提出聯(lián)合回歸與深度
2023-07-19 14:35:020

模擬矩陣在深度強化學(xué)習(xí)智能控制系統(tǒng)中的應(yīng)用

訊維模擬矩陣在深度強化學(xué)習(xí)智能控制系統(tǒng)中的應(yīng)用主要是通過構(gòu)建一個包含多種環(huán)境信息和動作空間的模擬矩陣,來模擬和預(yù)測深度強化學(xué)習(xí)智能控制系統(tǒng)在不同環(huán)境下的表現(xiàn)和效果,從而優(yōu)化控制策略和提高系統(tǒng)的性能
2023-09-04 14:26:36296

NeurIPS 2023 | 擴散模型解決多任務(wù)強化學(xué)習(xí)問題

擴散模型(diffusion model)在 CV 領(lǐng)域甚至 NLP 領(lǐng)域都已經(jīng)有了令人印象深刻的表現(xiàn)。最近的一些工作開始將 diffusion model 用于強化學(xué)習(xí)(RL)中來解決序列決策問題
2023-10-02 10:45:02403

什么是強化學(xué)習(xí)

強化學(xué)習(xí)機器學(xué)習(xí)的方式之一,它與監(jiān)督學(xué)習(xí)、無監(jiān)督學(xué)習(xí)并列,是三種機器學(xué)習(xí)訓(xùn)練方法之一。 在圍棋上擊敗世界第一李世石的 AlphaGo、在《星際爭霸2》中以 10:1 擊敗了人類頂級職業(yè)玩家
2023-10-30 11:36:401051

已全部加載完成

主站蜘蛛池模板: 亚洲欧美精品一中文字幕| 伊人久久影院| 翘臀少妇被扒开屁股日出水爆乳| 麻豆官网入口| 麻豆国产自制在线观看| 久久热免费视频| 麻豆婷婷狠狠色18禁久久| 年轻漂亮的妺妺中文字幕版| 欧美乱妇15p图| 色琪琪久久热在线| 亚洲粉嫩美白在线| 玉林天天论坛| caoporn超碰| 成人永久免费视频| 国产免费福利在线视频| 九色终合九色综合88| 美女被艹网站| 日韩午夜欧美精品一二三四区| 日夜啪啪一区二区三区| 亚洲 欧美 中文字幕 在线| 一边啪啪的一边呻吟声口述| 91福利在线观看| 高清午夜福利电影在线| 果冻传媒最新视频在线观看| 老师你奶真大下面水真多| 日本女人水多| 亚洲精品永久免费| 99久久蜜臀AV免费看蛮| 国产Av男人的天堂精品良久| 精品一卡2卡三卡4卡乱码精品视频| 摸老师丝袜小内内摸出水| 日日夜夜撸 在线影院| 亚洲色欲色欲综合网站| 99视频在线精品免费观看18| 国产黄A片在线观看永久免费麻豆 国产互换后人妻的疯狂VIDEO | 啊好大好厉害好爽真骚| 国产成人免费a在线资源| 加勒比一本之道高清视频在线观看| 男生插曲女生身全过程| 亚瑟天堂久久一区二区影院| 98国产精品人妻无码免费|