電動汽車的飛輪電池儲能技術
2012年08月09日 10:40 來源:互聯網 作者:秩名 我要評論(0)
使用化學電池的電動汽車目前已試驗過幾十年,但至今尚末進入實用階段。太陽能、風能、潮夕能、海浪能,都存在儲存問題,目前主要靠化學電池,但受到化學蓄電池壽命及效率的制約,至今尚不能廣泛應用。以上諸多問題,促使人們尋求一種效率高、壽命長、儲能多、使用方便,而且無污染的綠色儲能裝置。出乎意料,古老的“飛輪”變成了首選對象。
“飛輪”這一儲能元件,已被人們利用了數千年,從古老的紡車,到工業革命時的蒸汽機,以往主要是利用它的慣性來均衡轉速和闖過“死點”,由于它們的工作周期都很短,每旋轉一周時間不足一秒鐘,在這樣短的時間內,飛輪的能耗是可以忽略的。現在想利用飛輪來均衡周期長達12~24小時的能量,飛輪本身的能耗就變得非常突出了。能耗主要來自軸承摩擦和空氣阻力。人們曾通過改變軸承結構,如變滑動軸承為滾動軸承、液體動壓軸承、氣體動壓軸承等來減小軸承摩擦力,通過抽真空的辦法來減小空氣阻力,軸承摩擦系數已小到10-3。即使如此微小,飛輪所儲的能量在一天之內仍有25%被損失,仍不能滿足高效儲能的要求。再一個問題是常規的飛輪是由鋼(或鑄鐵)制成的,儲能有限。例如,欲使一個發電力為100萬千瓦的電廠均衡發電,儲能輪需用鋼材150萬噸!另外要完成電能機械能的轉換,還需要一套復雜的電力電子裝置,因而飛輪儲能方法一直未能得到廣泛的應用。
近年來,飛輪儲能技術取得突破性進展是基于下述三項技術的飛速發展:一是高能永磁及高溫超導技術的出現;二是高強纖維復合材料的問世;三是電力電子技術的飛速發展。為進一步減少軸承損耗,人們曾夢想去掉軸承,用磁鐵將轉子懸浮起來,但試驗結果是一次次失敗。后來被一位英國學者從理論上闡明物體不可能被永磁全懸浮(Earnshaw定理),頗使試驗者心灰意冷。出乎意料的是物體全懸浮之夢卻在超導技術中得以實現,真像是大自然對探索者的慰藉。
超導磁懸浮原理是這樣的:當我們將一塊永磁體的一個極對準超導體,并接近超導體時,超導體上便產生了感應電流。該電流產生的磁場剛好與永磁的磁場相反,于是二者便產生了斥力。由于超導體的電阻為零,感生電流強度將維持不變。若永磁體沿垂直方向接近超導體,永磁體將懸空停在自身重量等于斥力的位置上,而且對上下左右的干擾都產生抗力,干擾力消除后仍能回到原來位置,從而形成穩定的磁懸浮。若將下面的超導體換成永磁體,則兩永磁體之間在水平方向也產生斥力,故永磁懸浮是不穩定的。
利用超導這一特性,我們可以把具有一定質量的飛輪放在永磁體上邊,飛輪兼作電機轉子。當給電機充電時,飛輪增速儲能,變電能為機械能;飛輪降速時放能,變機械能為電能。圖1是儲能飛輪裝置的示意圖,圖中超導體是由鋇釔銅合金制成,并用液氮冷卻至77K,飛輪腔抽至10-8托的真空度(托為真空度單位,1Torr(托)=133.332Pa),這種飛輪能耗極小,每天僅耗掉儲能的2%。
質量,v是速度。由于飛輪上各點的速度是不一樣的,所以它的動能也可表達為:
式中∑是“求和”的表示,mi是輪上各點的質量,vi是輪上各點的速度。由上式可知,飛輪儲能大小除與飛輪的質量(重量)有關外,還與飛輪上各點的速度有關,而且是平方的關系。因此提高飛輪的速度(轉速)比增加質量更有效。但飛輪的轉速受飛輪本身材料限制。轉速過高,飛輪可能被強大的離心力撕裂。故采用高強度、低密度的高強復合纖維飛輪,能儲存更多的能量。目前選用的碳纖維復合材料,其輪緣線速度可達1000米/秒,比子彈速度還要高。正是由于高強復合材料的問世,飛輪儲能才進入實用階段。
下面介紹一下國外飛輪儲能的進展情況。
本文導航
- 第 1 頁:電動汽車的飛輪電池儲能技術
- 第 2 頁:國外飛輪儲能的進展情況