聚豐項(xiàng)目 > 基于A(yíng)B32VG1的室內(nèi)環(huán)境溫濕度檢測(cè)
本設(shè)計(jì)基于中科藍(lán)訊的AB32VG1開(kāi)發(fā)板, 通過(guò)DHT22檢測(cè)室內(nèi)環(huán)境,當(dāng)溫度或濕度高于設(shè)定值或低于設(shè)定值,就會(huì)發(fā)出警報(bào),通過(guò)屏幕顯示出當(dāng)前室內(nèi)的溫度值。
jf_54891073
分享jf_54891073
團(tuán)隊(duì)成員
張林菲 無(wú)
AB32VG1主頻 120M ,片上集成 RAM 192K, Flash 4Mbit,ADC,PWM,USB,UART,IIC 等資源。提供SDK,驅(qū)動(dòng)齊全,支持RT-Thread Studio 開(kāi)發(fā)應(yīng)用,圖形化配置系統(tǒng),一鍵開(kāi)啟外設(shè),一鍵使用軟件包,強(qiáng)大的自動(dòng)代碼編輯輔助。
DHT22數(shù)字溫濕度傳感器是一款含有已校準(zhǔn)數(shù)字信號(hào)輸出的溫濕度復(fù)合傳感器,它應(yīng)用專(zhuān)用的數(shù)字模塊采集技術(shù)和溫濕度傳感技術(shù),確保產(chǎn)品具有極高的可靠性和卓越的長(zhǎng)期穩(wěn)定性。DHT11是一款溫濕度傳感器。 其測(cè)量精度為:濕度+-5%RH, 溫度+-2℃,量程為:濕度20-90%RH, 溫度0~50℃,采樣周期大于等于1秒/次。傳感器包括一個(gè)電阻式感濕元件和一個(gè)NTC測(cè)溫元件,并連接一個(gè)高性能8位單片機(jī)相。DHT11的優(yōu)點(diǎn)有:品質(zhì)高、響應(yīng)快、抗干擾能力強(qiáng)、性?xún)r(jià)比極高、體積小、功耗低等。
#include <board.h>
#include "dhtxx.h"
#define DBG_TAG "sensor.asair.dhtxx"
#ifdef PKG_USING_DHTXX_DEBUG
#define DBG_LVL DBG_LOG
#else
#define DBG_LVL DBG_ERROR
#endif
#include <rtdbg.h>
/* timing */
#define DHT1x_BEGIN_TIME 20 /* ms */
#define DHT2x_BEGIN_TIME 1 /* ms */
#define DHTxx_PULL_TIME 30 /* us */
#define DHTxx_REPLY_TIME 100 /* us */
#define MEASURE_TIME 40 /* us */
/**
* This function will split a number into two part according to times.
*
* @param num the number will be split
* @param integer the integer part
* @param decimal the decimal part
* @param times how many times of the real number (you should use 10 in this case)
*
* @return 0 if num is positive, 1 if num is negative
*/
int split_int(const int num, int *integer, int *decimal, const rt_uint32_t times)
{
int flag = 0;
if (num < 0) flag = 1;
int anum = num<0 ? -num : num;
*integer = anum / times;
*decimal = anum % times;
return flag;
}
/**
* This function will convert temperature in degree Celsius to Kelvin.
*
* @param c the temperature indicated by degree Celsius
*
* @return the result
*/
float convert_c2k(float c)
{
return c + 273.15;
}
/**
* This function will convert temperature in degree Celsius to Fahrenheit.
*
* @param c the temperature indicated by degree Celsius
*
* @return the result
*/
float convert_c2f(float c)
{
return c * 1.8 + 32;
}
/**
* This function will convert temperature in degree Fahrenheit to Celsius.
*
* @param f the temperature indicated by degree Fahrenheit
*
* @return the result
*/
float convert_f2c(float f)
{
return (f - 32) * 0.55555;
}
/**
* This function will read a bit from sensor.
*
* @param pin the pin of Dout
*
* @return the bit value
*/
static uint8_t dht_read_bit(const rt_base_t pin)
{
uint8_t retry = 0;
while(rt_pin_read(pin) && retry < DHTxx_REPLY_TIME)
{
retry++;
rt_hw_us_delay(1);
}
retry = 0;
while(!rt_pin_read(pin) && retry < DHTxx_REPLY_TIME)
{
retry++;
rt_hw_us_delay(1);
}
rt_hw_us_delay(MEASURE_TIME);
return rt_pin_read(pin);
}
/**
* This function will read a byte from sensor.
*
* @param pin the pin of Dout
*
* @return the byte
*/
static uint8_t dht_read_byte(const rt_base_t pin)
{
uint8_t i, byte = 0;
for(i=0; i<8; i++)
{
byte <<= 1;
byte |= dht_read_bit(pin);
}
return byte;
}
/**
* This function will read and update data array.
*
* @param dev the device to be operated
*
* @return RT_TRUE if read successfully, otherwise return RT_FALSE.
*/
rt_bool_t dht_read(dht_device_t dev)
{
RT_ASSERT(dev);
uint8_t i, retry = 0, sum = 0;
#ifdef PKG_USING_DHTXX_INTERRUPT_DISABLE
rt_base_t level;
#endif
/* Reset data buffer */
rt_memset(dev->data, 0, DHT_DATA_SIZE);
/* MCU request sampling */
rt_pin_mode(dev->pin, PIN_MODE_OUTPUT);
rt_pin_write(dev->pin, PIN_LOW);
if (dev->type == DHT11 || dev->type == DHT12) {
rt_thread_mdelay(DHT1x_BEGIN_TIME); /* Tbe */
} else {
rt_thread_mdelay(DHT2x_BEGIN_TIME);
}
#ifdef PKG_USING_DHTXX_INTERRUPT_DISABLE
level = rt_hw_interrupt_disable();
#endif
rt_pin_mode(dev->pin, PIN_MODE_INPUT_PULLUP);
rt_hw_us_delay(DHTxx_PULL_TIME); /* Tgo */
/* Waiting for sensor reply */
while (rt_pin_read(dev->pin) && retry < DHTxx_REPLY_TIME)
{
retry++;
rt_hw_us_delay(1); /* Trel */
}
if(retry >= DHTxx_REPLY_TIME) return RT_FALSE;
retry = 0;
while (!rt_pin_read(dev->pin) && retry < DHTxx_REPLY_TIME)
{
retry++;
rt_hw_us_delay(1); /* Treh */
};
if(retry >= DHTxx_REPLY_TIME) return RT_FALSE;
/* Read data */
for(i=0; i<DHT_DATA_SIZE; i++)
{
dev->data[i] = dht_read_byte(dev->pin);
}
#ifdef PKG_USING_DHTXX_INTERRUPT_DISABLE
rt_hw_interrupt_enable(level);
#endif
/* Checksum */
for(i=0; i<DHT_DATA_SIZE-1; i++)
{
sum += dev->data[i];
}
if(sum != dev->data[4]) return RT_FALSE;
return RT_TRUE;
}
/**
* This function will get the humidity from dhtxx sensor.
*
* @param dev the device to be operated
*
* @return the humidity value
*/
rt_int32_t dht_get_humidity(dht_device_t const dev)
{
RT_ASSERT(dev);
rt_int32_t humi = 0;
switch(dev->type)
{
case DHT11:
case DHT12:
humi = dev->data[0] * 10 + dev->data[1];
break;
case DHT21:
case DHT22:
humi = (dev->data[0] << 8) + dev->data[1];
break;
default:
break;
}
return humi;
}
/**
* This function will get the temperature from dhtxx sensor.
*
* @param dev the device to be operated
*
* @return the temperature value
*/
rt_int32_t dht_get_temperature(dht_device_t const dev)
{
RT_ASSERT(dev);
rt_int32_t temp = 0;
switch(dev->type)
{
case DHT11:
case DHT12:
temp = dev->data[2] * 10 + (dev->data[3] & 0x7f);
if(dev->data[3] & 0x80) {
temp = -temp;
}
break;
case DHT21:
case DHT22:
temp = ((dev->data[2] & 0x7f) << 8) + dev->data[3];
if(dev->data[2] & 0x80) {
temp = -temp;
}
break;
default:
break;
}
return temp;
}
/**
* This function will init dhtxx sensor device.
*
* @param dev the device to init
* @param pin the pin of Dout
*
* @return the device handler
*/
rt_err_t dht_init(struct dht_device *dev, const rt_base_t pin)
{
if(dev == NULL)
return -RT_ERROR;
dev->type = DHT_TYPE;
dev->pin = pin;
rt_memset(dev->data, 0, DHT_DATA_SIZE);
rt_pin_mode(dev->pin, PIN_MODE_INPUT_PULLUP);
return RT_EOK;
}
dht_device_t dht_create(const rt_base_t pin)
{
dht_device_t dev;
dev = rt_calloc(1, sizeof(struct dht_device));
if (dev == RT_NULL)
{
LOG_E("Can't allocate memory for dhtxx device");
return RT_NULL;
}
dev->type = DHT_TYPE;
dev->pin = pin;
rt_memset(dev->data, 0, DHT_DATA_SIZE);
rt_pin_mode(dev->pin, PIN_MODE_INPUT_PULLUP);
return dev;
}
void dht_delete(dht_device_t dev)
{
if (dev)
rt_free(dev);
}
#include <rtthread.h>
#include <rtdevice.h>
#include <board.h>
#include "dhtxx.h"
#define DATA_PIN PKG_USING_DHTXX_SAMPLE_PIN
/* cat_dhtxx sensor data by dynamic */
static void cat_dhtxx(void)
{
dht_device_t sensor = dht_create(DATA_PIN);
if(dht_read(sensor)) {
rt_int32_t temp = dht_get_temperature(sensor);
rt_int32_t humi = dht_get_humidity(sensor);
rt_kprintf("Temp: %d, Humi: %d\n", temp, humi);
}
else {
rt_kprintf("Read dht sensor failed.\n");
}
dht_delete(sensor);
}
#ifdef FINSH_USING_MSH
MSH_CMD_EXPORT(cat_dhtxx, read dhtxx humidity and temperature);
#endif
#ifndef __DHTXX_H__
#define __DHTXX_H__
#include <rtthread.h>
#include <rtdevice.h>
#include <sensor.h>
#define DHTLIB_VERSION "0.9.0"
#define DHT_DATA_SIZE 5
/* sensor model type */
#define DHT11 0
#define DHT12 1
#define DHT21 2
#define DHT22 3
#define AM2301 DHT21
#define AM2302 DHT22
#define AM2320 DHT22
#if defined(PKG_USING_DHTXX_TYPE_DHT11)
#define DHT_TYPE DHT11
#elif defined(PKG_USING_DHTXX_TYPE_DHT12)
#define DHT_TYPE DHT12
#elif defined(PKG_USING_DHTXX_TYPE_DHT21)
#define DHT_TYPE DHT21
#elif defined(PKG_USING_DHTXX_TYPE_DHT22)
#define DHT_TYPE DHT22
#endif
struct dht_device
{
rt_base_t pin;
rt_uint8_t type;
rt_uint8_t data[DHT_DATA_SIZE];
rt_mutex_t lock;
};
typedef struct dht_device *dht_device_t;
dht_device_t dht_create(const rt_base_t pin);
void dht_delete(dht_device_t dev);
rt_err_t dht_init(struct dht_device *dev, const rt_base_t pin);
rt_bool_t dht_read(dht_device_t dev);
rt_int32_t dht_get_humidity(dht_device_t dev);
rt_int32_t dht_get_temperature(dht_device_t dev);
float convert_c2k(float c);
float convert_c2f(float c);
float convert_f2c(float f);
rt_int32_t split_int(const rt_int32_t num, rt_int32_t *integer,
rt_int32_t *decimal, const rt_uint32_t times);
rt_err_t rt_hw_dht_init(const char *name, struct rt_sensor_config *cfg);
#endif /* __DHTXX_H__ */
#include "oled.h"
#include "oledfont.h"
u8 OLED_GRAM[144][8];
struct OLED_sss
{
uint8_t OLED_SCLK;
uint8_t OLED_SDIN;
uint8_t OLED_RST;
uint8_t OLED_DC;
uint8_t OLED_CS;
};
struct OLED_sss oled_ccc;
//反顯函數(shù)
void OLED_ColorTurn(u8 i)
{
if(i==0)
{
OLED_WR_Byte(0xA6,OLED_CMD);//正常顯示
}
if(i==1)
{
OLED_WR_Byte(0xA7,OLED_CMD);//反色顯示
}
}
//屏幕旋轉(zhuǎn)180度
void OLED_DisplayTurn(u8 i)
{
if(i==0)
{
OLED_WR_Byte(0xC8,OLED_CMD);//正常顯示
OLED_WR_Byte(0xA1,OLED_CMD);
}
if(i==1)
{
OLED_WR_Byte(0xC0,OLED_CMD);//反轉(zhuǎn)顯示
OLED_WR_Byte(0xA0,OLED_CMD);
}
}
void OLED_WR_Byte(u8 dat,u8 cmd)
{
u8 i;
if(cmd)
OLED_DC_Set();
else
OLED_DC_Clr();
OLED_CS_Clr();
for(i=0;i<8;i++)
{
OLED_SCLK_Clr();
if(dat&0x80)
OLED_SDIN_Set();
else
OLED_SDIN_Clr();
OLED_SCLK_Set();
dat<<=1;
}
OLED_CS_Set();
OLED_DC_Set();
}
//開(kāi)啟OLED顯示
void OLED_DisPlay_On(void)
{
OLED_WR_Byte(0x8D,OLED_CMD);//電荷泵使能
OLED_WR_Byte(0x14,OLED_CMD);//開(kāi)啟電荷泵
OLED_WR_Byte(0xAF,OLED_CMD);//點(diǎn)亮屏幕
}
//關(guān)閉OLED顯示
void OLED_DisPlay_Off(void)
{
OLED_WR_Byte(0x8D,OLED_CMD);//電荷泵使能
OLED_WR_Byte(0x10,OLED_CMD);//關(guān)閉電荷泵
OLED_WR_Byte(0xAF,OLED_CMD);//關(guān)閉屏幕
}
//更新顯存到OLED
void OLED_Refresh(void)
{
u8 i,n;
for(i=0;i<8;i++)
{
OLED_WR_Byte(0xb0+i,OLED_CMD); //設(shè)置行起始地址
OLED_WR_Byte(0x00,OLED_CMD); //設(shè)置低列起始地址
OLED_WR_Byte(0x10,OLED_CMD); //設(shè)置高列起始地址
for(n=0;n<128;n++)
OLED_WR_Byte(OLED_GRAM[n][i],OLED_DATA);
}
}
//清屏函數(shù)
void OLED_Clear(void)
{
u8 i,n;
for(i=0;i<8;i++)
{
for(n=0;n<128;n++)
{
OLED_GRAM[n][i]=0;//清除所有數(shù)據(jù)
}
}
OLED_Refresh();//更新顯示
}
//畫(huà)點(diǎn)
//x:0~127
//y:0~63
void OLED_DrawPoint(u8 x,u8 y)
{
u8 i,m,n;
i=y/8;
m=y%8;
n=1<<m;
OLED_GRAM[x][i]|=n;
}
//清除一個(gè)點(diǎn)
//x:0~127
//y:0~63
void OLED_ClearPoint(u8 x,u8 y)
{
u8 i,m,n;
i=y/8;
m=y%8;
n=1<<m;
OLED_GRAM[x][i]=~OLED_GRAM[x][i];
OLED_GRAM[x][i]|=n;
OLED_GRAM[x][i]=~OLED_GRAM[x][i];
}
//畫(huà)線(xiàn)
//x:0~128
//y:0~64
void OLED_DrawLine(u8 x1,u8 y1,u8 x2,u8 y2)
{
u8 i,k,k1,k2,y0;
if((x1<0)||(x2>128)||(y1<0)||(y2>64)||(x1>x2)||(y1>y2))return;
if(x1==x2) //畫(huà)豎線(xiàn)
{
for(i=0;i<(y2-y1);i++)
{
OLED_DrawPoint(x1,y1+i);
}
}
else if(y1==y2) //畫(huà)橫線(xiàn)
{
for(i=0;i<(x2-x1);i++)
{
OLED_DrawPoint(x1+i,y1);
}
}
else //畫(huà)斜線(xiàn)
{
k1=y2-y1;
k2=x2-x1;
k=k1*10/k2;
for(i=0;i<(x2-x1);i++)
{
OLED_DrawPoint(x1+i,y1+i*k/10);
}
}
}
//x,y:圓心坐標(biāo)
//r:圓的半徑
void OLED_DrawCircle(u8 x,u8 y,u8 r)
{
int a, b,num;
a = 0;
b = r;
while(2 * b * b >= r * r)
{
OLED_DrawPoint(x + a, y - b);
OLED_DrawPoint(x - a, y - b);
OLED_DrawPoint(x - a, y + b);
OLED_DrawPoint(x + a, y + b);
OLED_DrawPoint(x + b, y + a);
OLED_DrawPoint(x + b, y - a);
OLED_DrawPoint(x - b, y - a);
OLED_DrawPoint(x - b, y + a);
a++;
num = (a * a + b * b) - r*r;//計(jì)算畫(huà)的點(diǎn)離圓心的距離
if(num > 0)
{
b--;
a--;
}
}
}
//在指定位置顯示一個(gè)字符,包括部分字符
//x:0~127
//y:0~63
//size:選擇字體 12/16/24
//取模方式 逐列式
void OLED_ShowChar(u8 x,u8 y,u8 chr,u8 size1)
{
u8 i,m,temp,size2,chr1;
u8 y0=y;
size2=(size1/8+((size1%8)?1:0))*(size1/2); //得到字體一個(gè)字符對(duì)應(yīng)點(diǎn)陣集所占的字節(jié)數(shù)
chr1=chr-' '; //計(jì)算偏移后的值
for(i=0;i<size2;i++)
{
if(size1==12)
{temp=asc2_1206[chr1][i];} //調(diào)用1206字體
else if(size1==16)
{temp=asc2_1608[chr1][i];} //調(diào)用1608字體
else if(size1==24)
{temp=asc2_2412[chr1][i];} //調(diào)用2412字體
else return;
for(m=0;m<8;m++) //寫(xiě)入數(shù)據(jù)
{
if(temp&0x80)OLED_DrawPoint(x,y);
else OLED_ClearPoint(x,y);
temp<<=1;
y++;
if((y-y0)==size1)
{
y=y0;
x++;
break;
}
}
}
}
//顯示字符串
//x,y:起點(diǎn)坐標(biāo)
//size1:字體大小
//*chr:字符串起始地址
void OLED_ShowString(u8 x,u8 y,u8 *chr,u8 size1)
{
while((*chr>=' ')&&(*chr<='~'))//判斷是不是非法字符!
{
OLED_ShowChar(x,y,*chr,size1);
x+=size1/2;
if(x>128-size1) //換行
{
x=0;
y+=2;
}
chr++;
}
}
//m^n
u32 OLED_Pow(u8 m,u8 n)
{
u32 result=1;
while(n--)
{
result*=m;
}
return result;
}
////顯示2個(gè)數(shù)字
////x,y :起點(diǎn)坐標(biāo)
////len :數(shù)字的位數(shù)
////size:字體大小
void OLED_ShowNum(u8 x,u8 y,u32 num,u8 len,u8 size1)
{
u8 t,temp;
for(t=0;t<len;t++)
{
temp=(num/OLED_Pow(10,len-t-1))%10;
if(temp==0)
{
OLED_ShowChar(x+(size1/2)*t,y,'0',size1);
}
else
{
OLED_ShowChar(x+(size1/2)*t,y,temp+'0',size1);
}
}
}
//顯示漢字
//x,y:起點(diǎn)坐標(biāo)
//num:漢字對(duì)應(yīng)的序號(hào)
//取模方式 列行式
void OLED_ShowChinese(u8 x,u8 y,u8 num,u8 size1)
{
u8 i,m,n=0,temp,chr1;
u8 x0=x,y0=y;
u8 size3=size1/8;
while(size3--)
{
chr1=num*size1/8+n;
n++;
for(i=0;i<size1;i++)
{
if(size1==16)
{temp=Hzk1[chr1][i];}//調(diào)用16*16字體
else if(size1==24)
{temp=Hzk2[chr1][i];}//調(diào)用24*24字體
else if(size1==32)
{temp=Hzk3[chr1][i];}//調(diào)用32*32字體
else if(size1==64)
{temp=Hzk4[chr1][i];}//調(diào)用64*64字體
else return;
for(m=0;m<8;m++)
{
if(temp&0x01)OLED_DrawPoint(x,y);
else OLED_ClearPoint(x,y);
temp>>=1;
y++;
}
x++;
if((x-x0)==size1)
{x=x0;y0=y0+8;}
y=y0;
}
}
}
//num 顯示漢字的個(gè)數(shù)
//space 每一遍顯示的間隔
void OLED_ScrollDisplay(u8 num,u8 space)
{
u8 i,n,t=0,m=0,r;
while(1)
{
if(m==0)
{
OLED_ShowChinese(128,24,t,16); //寫(xiě)入一個(gè)漢字保存在OLED_GRAM[][]數(shù)組中
t++;
}
if(t==num)
{
for(r=0;r<16*space;r++) //顯示間隔
{
for(i=0;i<144;i++)
{
for(n=0;n<8;n++)
{
OLED_GRAM[i-1][n]=OLED_GRAM[i][n];
}
}
OLED_Refresh();
}
t=0;
}
m++;
if(m==16){m=0;}
for(i=0;i<144;i++) //實(shí)現(xiàn)左移
{
for(n=0;n<8;n++)
{
OLED_GRAM[i-1][n]=OLED_GRAM[i][n];
}
}
OLED_Refresh();
}
}
//配置寫(xiě)入數(shù)據(jù)的起始位置
void OLED_WR_BP(u8 x,u8 y)
{
OLED_WR_Byte(0xb0+y,OLED_CMD);//設(shè)置行起始地址
OLED_WR_Byte(((x&0xf0)>>4)|0x10,OLED_CMD);
OLED_WR_Byte((x&0x0f),OLED_CMD);
}
//x0,y0:起點(diǎn)坐標(biāo)
//x1,y1:終點(diǎn)坐標(biāo)
//BMP[]:要寫(xiě)入的圖片數(shù)組
void OLED_ShowPicture(u8 x0,u8 y0,u8 x1,u8 y1,u8 BMP[])
{
u32 j=0;
u8 x=0,y=0;
if(y%8==0)y=0;
else y+=1;
for(y=y0;y<y1;y++)
{
OLED_WR_BP(x0,y);
for(x=x0;x<x1;x++)
{
OLED_WR_Byte(BMP[j],OLED_DATA);
j++;
}
}
}
//OLED的初始化
void OLED_Init(void)
{
oled_ccc.OLED_SCLK = rt_pin_get("PA.3");
oled_ccc.OLED_SDIN = rt_pin_get("PA.4");
oled_ccc.OLED_RST = rt_pin_get("PF.1");
oled_ccc.OLED_DC = rt_pin_get("PB.0");
oled_ccc.OLED_CS = rt_pin_get("PA.5");
rt_pin_mode(oled_ccc.OLED_SCLK, PIN_MODE_OUTPUT);
rt_pin_mode(oled_ccc.OLED_SDIN, PIN_MODE_OUTPUT);
rt_pin_mode(oled_ccc.OLED_RST, PIN_MODE_OUTPUT);
rt_pin_mode(oled_ccc.OLED_DC, PIN_MODE_OUTPUT);
rt_pin_mode(oled_ccc.OLED_CS, PIN_MODE_OUTPUT);
rt_pin_write(oled_ccc.OLED_SCLK, PIN_HIGH);
rt_pin_write(oled_ccc.OLED_SDIN, PIN_HIGH);
rt_pin_write(oled_ccc.OLED_RST, PIN_HIGH);
rt_pin_write(oled_ccc.OLED_DC, PIN_HIGH);
rt_pin_write(oled_ccc.OLED_CS, PIN_HIGH);
OLED_RST_Clr();//復(fù)位
rt_thread_mdelay(200);
OLED_RST_Set();
OLED_WR_Byte(0xAE,OLED_CMD);//--turn off oled panel
OLED_WR_Byte(0x00,OLED_CMD);//---set low column address
OLED_WR_Byte(0x10,OLED_CMD);//---set high column address
OLED_WR_Byte(0x40,OLED_CMD);//--set start line address Set Mapping RAM Display Start Line (0x00~0x3F)
OLED_WR_Byte(0x81,OLED_CMD);//--set contrast control register
OLED_WR_Byte(0xCF,OLED_CMD);// Set SEG Output Current Brightness
OLED_WR_Byte(0xA1,OLED_CMD);//--Set SEG/Column Mapping 0xa0左右反置 0xa1正常
OLED_WR_Byte(0xC8,OLED_CMD);//Set COM/Row Scan Direction 0xc0上下反置 0xc8正常
OLED_WR_Byte(0xA6,OLED_CMD);//--set normal display
OLED_WR_Byte(0xA8,OLED_CMD);//--set multiplex ratio(1 to 64)
OLED_WR_Byte(0x3f,OLED_CMD);//--1/64 duty
OLED_WR_Byte(0xD3,OLED_CMD);//-set display offset Shift Mapping RAM Counter (0x00~0x3F)
OLED_WR_Byte(0x00,OLED_CMD);//-not offset
OLED_WR_Byte(0xd5,OLED_CMD);//--set display clock divide ratio/oscillator frequency
OLED_WR_Byte(0x80,OLED_CMD);//--set divide ratio, Set Clock as 100 Frames/Sec
OLED_WR_Byte(0xD9,OLED_CMD);//--set pre-charge period
OLED_WR_Byte(0xF1,OLED_CMD);//Set Pre-Charge as 15 Clocks & Discharge as 1 Clock
OLED_WR_Byte(0xDA,OLED_CMD);//--set com pins hardware configuration
OLED_WR_Byte(0x12,OLED_CMD);
OLED_WR_Byte(0xDB,OLED_CMD);//--set vcomh
OLED_WR_Byte(0x40,OLED_CMD);//Set VCOM Deselect Level
OLED_WR_Byte(0x20,OLED_CMD);//-Set Page Addressing Mode (0x00/0x01/0x02)
OLED_WR_Byte(0x02,OLED_CMD);//
OLED_WR_Byte(0x8D,OLED_CMD);//--set Charge Pump enable/disable
OLED_WR_Byte(0x14,OLED_CMD);//--set(0x10) disable
OLED_WR_Byte(0xA4,OLED_CMD);// Disable Entire Display On (0xa4/0xa5)
OLED_WR_Byte(0xA6,OLED_CMD);// Disable Inverse Display On (0xa6/a7)
OLED_WR_Byte(0xAF,OLED_CMD);
OLED_Clear();
}
演示視頻:
(15.37 MB)下載
jf_02684796: 好
回復(fù)