--- 產品詳情 ---
Number of channels (#) | 8 |
Technology Family | LVC |
Supply voltage (Min) (V) | 2 |
Supply voltage (Max) (V) | 3.6 |
Input type | Standard CMOS |
Output type | 3-State |
Clock Frequency (Max) (MHz) | 100 |
IOL (Max) (mA) | 24 |
IOH (Max) (mA) | -24 |
ICC (Max) (uA) | 10 |
Features | Balanced outputs, Very high speed (tpd 5-10ns), Over-voltage tolerant inputs, Partial power down (Ioff) |
- Controlled Baseline
- One Assembly/Test Site, One Fabrication Site
- Extended Temperature Performance of –40°C to 125°C
- Enhanced Diminishing Manufacturing Sources (DMS) Support
- Enhanced Product-Change Notification
- Qualification Pedigree
- Operates From 2 V to 3.6 V
- Inputs Accept Voltages to 5.5 V
- Max tpd of 7 ns at 3.3 V
- Typical VOLP (Output Ground Bounce)
???<0.8 V at VCC = 3.3 V, TA = 25°C - Typical VOHV (Output VOH Undershoot)
???>2 V at VCC = 3.3 V, TA = 25°C - Supports Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltage With 3.3-V VCC)
- Ioff Supports Partial-Power-Down Mode Operation
Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.
The SN74LVC574A-EP octal edge-triggered D-type flip-flop is designed for 2.7-V to 3.6-V VCC operation.
This device features 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. It is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.
On the positive transition of the clock (CLK) input, the Q outputs are set to the logic levels at the data (D) inputs.
A buffered output-enable (OE)\ input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components.
OE\ does not affect the internal operations of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.
This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.
To ensure the high-impedance state during power up or power down, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of thIs device as a translator in a mixed 3.3-V/5-V system environment.
為你推薦
-
TI數字多路復用器和編碼器SN54HC1512022-12-23 15:12
-
TI數字多路復用器和編碼器SN54LS1532022-12-23 15:12
-
TI數字多路復用器和編碼器CD54HC1472022-12-23 15:12
-
TI數字多路復用器和編碼器CY74FCT2257T2022-12-23 15:12
-
TI數字多路復用器和編碼器SN74LVC257A2022-12-23 15:12
-
TI數字多路復用器和編碼器SN74LVC157A2022-12-23 15:12
-
TI數字多路復用器和編碼器SN74ALS258A2022-12-23 15:12
-
TI數字多路復用器和編碼器SN74ALS257A2022-12-23 15:12
-
TI數字多路復用器和編碼器SN74ALS157A2022-12-23 15:12
-
TI數字多路復用器和編碼器SN74AHCT1582022-12-23 15:12
-
電動汽車直流快充方案設計【含參考設計】2023-08-03 08:08
-
Buck電路的原理及器件選型指南2023-07-31 22:28
-
100W USB PD 3.0電源2023-07-31 22:27
-
基于STM32的300W無刷直流電機驅動方案2023-07-06 10:02
-
上新啦!開發板僅需9.9元!2023-06-21 17:43
-
參考設計 | 2KW AC/DC數字電源方案2023-06-21 17:43
-
千萬不能小瞧的PCB半孔板2023-06-21 17:34