挑戰(zhàn)
目前國內(nèi)外基于電機(jī)模型建立的控制策略在電機(jī)的低速脈動(dòng)、高速弱磁、穩(wěn)定性和輸出轉(zhuǎn)矩一致性等方面還存在諸多問題。為了能更好的解決電機(jī)的低速轉(zhuǎn)矩脈動(dòng)的問題,本文建立了引入逆變器死區(qū)時(shí)間的電機(jī)模型,逆變器死區(qū)時(shí)間很短并且IGBT的開關(guān)過程還存在延時(shí)和滯后的問題,為了能夠準(zhǔn)確的捕捉死區(qū)時(shí)間引起的電壓波形畸變,要求數(shù)據(jù)采集卡有很高的采樣率,除此之外,為了使研究結(jié)果更加精確,需要板卡具有較高的信噪比以及有效位。綜上所述,在死區(qū)時(shí)間引起的電壓波形畸變的研究中,需要一塊高采樣率、高精度以及高信噪比的板卡以滿足對(duì)信號(hào)捕捉的要求。
解決方案
首先對(duì)死區(qū)效應(yīng)進(jìn)行分析,針對(duì)仿真結(jié)果提出一種減小死區(qū)時(shí)間引起電壓波形畸變的方法,通過應(yīng)用具有16位高分辨率A/D轉(zhuǎn)換器并且同步采樣采樣率高達(dá)16MS/s的數(shù)據(jù)采集卡PCI-9846H配合電流傳感器、電壓傳感器、轉(zhuǎn)矩儀、電機(jī)及其控制器、測(cè)功機(jī)等設(shè)備完成車用電機(jī)試驗(yàn)平臺(tái)的搭建,通過凌華公司提供的LABVIEW相關(guān)驅(qū)動(dòng)程序進(jìn)行上位機(jī)數(shù)據(jù)采集系統(tǒng)的開發(fā)設(shè)計(jì),通過對(duì)電壓、電流、轉(zhuǎn)矩、轉(zhuǎn)速信息的采集與分析,對(duì)本文提出的減小死區(qū)時(shí)間對(duì)輸出電壓波形畸變的方法進(jìn)行了驗(yàn)證,試驗(yàn)結(jié)果基于PCI-9846H的數(shù)據(jù)采集系統(tǒng)具有高采樣率和高采樣精度,能夠滿足本文對(duì)死區(qū)時(shí)間引起的電壓波形畸變信號(hào)捕捉的要求,同時(shí)本文提出的改進(jìn)方法,能夠很好的改善電壓的輸出波形,進(jìn)而能夠減少死區(qū)時(shí)間對(duì)電機(jī)在低速工況時(shí)性能的影響
引言
電機(jī)驅(qū)動(dòng)系統(tǒng)是電動(dòng)汽車的核心部分[1-2]。按所使用電機(jī)的類型可以分為直流電機(jī)驅(qū)動(dòng)系統(tǒng)和交流電機(jī)驅(qū)動(dòng)系統(tǒng)[3],而交流電機(jī)驅(qū)動(dòng)系統(tǒng)中,感應(yīng)電機(jī)容易被接受,使用較廣泛,永磁同步電機(jī)由于其本身的高能量密度與高效率,具有比較大的競(jìng)爭(zhēng)優(yōu)勢(shì),應(yīng)用范圍日益增多。
為了滿足整車動(dòng)力性能要求,電機(jī)驅(qū)動(dòng)系統(tǒng)要有較高的動(dòng)態(tài)性能,目前比較成功的控制策略包括:基于穩(wěn)態(tài)模型的變頻變壓控制(VVVF)、基于動(dòng)態(tài)模型的磁場(chǎng)定向控制(FOC)以及直接轉(zhuǎn)矩控制(Direct Torque Control——DTC)。其中直接轉(zhuǎn)矩控制是在矢量控制基礎(chǔ)之上發(fā)展起來的,其主要優(yōu)點(diǎn)是:摒棄了矢量控制中的解耦思想,直接控制電動(dòng)機(jī)的磁鏈和轉(zhuǎn)矩,并利用定子磁鏈定向代替了矢量控制中的轉(zhuǎn)子磁鏈定向,避開了電動(dòng)機(jī)中不易確定的參數(shù)(轉(zhuǎn)子電阻等)識(shí)別。目前國內(nèi)外的永磁同步電機(jī)的數(shù)學(xué)模型只是基于中線不接出三相對(duì)稱繞組條件下,引入轉(zhuǎn)子磁鏈、定子漏抗、及各繞組的互感而建立的,忽略了軸承及其他雜散損耗以及PWM波等因素對(duì)電機(jī)的影響,因此基于該電機(jī)模型建立的控制策略在電機(jī)的低速脈動(dòng)、高速弱磁、穩(wěn)定性和輸出轉(zhuǎn)矩一致性等方面還存在諸多問題[5]。為了能更好的解決直接轉(zhuǎn)矩控制下電機(jī)的低速轉(zhuǎn)矩脈動(dòng)的問題,本文建立了引入逆變器死區(qū)時(shí)間的電機(jī)模型,通過對(duì)死區(qū)時(shí)間的產(chǎn)生和作用機(jī)理進(jìn)行分析,得出引起輸出電壓波形畸變以及相位變化的關(guān)鍵影響因子,針對(duì)仿真結(jié)果提出一種減小死區(qū)時(shí)間引起電壓波形畸變的方法,通過應(yīng)用PCI-9846H、電流傳感器、電壓傳感器、轉(zhuǎn)矩儀、電機(jī)及其控制器、測(cè)功機(jī)等設(shè)備完成車用電機(jī)試驗(yàn)平臺(tái)的搭建,上位機(jī)通過LABVIEW編寫數(shù)據(jù)采集系統(tǒng),通過對(duì)電壓、電流、轉(zhuǎn)矩、轉(zhuǎn)速信息的采集與分析,對(duì)本文提出的減小死區(qū)時(shí)間對(duì)輸出電壓波形畸變的方法進(jìn)行了驗(yàn)證。
1.逆變器死區(qū)時(shí)間的研究
1.1逆變器死區(qū)時(shí)間產(chǎn)生機(jī)理
對(duì)于永磁同步電機(jī)驅(qū)動(dòng)而言,在IGBT正常工作時(shí),上下橋臂是交替互補(bǔ)導(dǎo)通的。在交替過程中必須存在上下橋臂同時(shí)關(guān)閉的狀態(tài),確保在上/下橋臂導(dǎo)通前,對(duì)應(yīng)的互補(bǔ)下/上橋臂可靠關(guān)斷,這段上下兩個(gè)橋臂同時(shí)關(guān)斷的時(shí)間稱為死區(qū)時(shí)間。針對(duì)目前市場(chǎng)上IGBT的調(diào)研發(fā)現(xiàn),逆變器死區(qū)時(shí)間一般為3~7μs[6]。在電機(jī)工作在一定轉(zhuǎn)速以上時(shí),由于基波電壓足夠大,死區(qū)效應(yīng)對(duì)基波電壓影響較小,所以不為人們所重視;但電機(jī)工作在低速時(shí),基波電壓很小,死區(qū)效應(yīng)對(duì)基波電壓影響相對(duì)較大,死區(qū)時(shí)間越長,逆變器輸出電壓的損耗越大,電壓波形的畸變程度也會(huì)變大,除此之外死區(qū)時(shí)間還會(huì)影響輸出電壓的相位,使PWM波形不再對(duì)稱于中心,造成電機(jī)損耗增加,效率降低,輸出轉(zhuǎn)矩脈動(dòng)等。圖1所示為死區(qū)時(shí)間產(chǎn)生的機(jī)理以及對(duì)輸出電壓的影響,其中V為理想的PWM電壓輸出波形,Ua-為負(fù)母線電
壓,Ua+為正母線電壓,v為誤差電壓,Ia為輸出電流。
圖1 死區(qū)效應(yīng)
由圖1所示,可以發(fā)現(xiàn)誤差電壓具有以下特征[7]:
1) 在每個(gè)開關(guān)周期內(nèi)均存在一個(gè)誤差電壓脈沖;
2) 每個(gè)誤差電壓脈沖的幅值均為Ud;
3) 每個(gè)誤差電壓脈沖的寬度均為Td;
4) 誤差電壓脈沖的極性與電流極性相反;
盡管一個(gè)誤差電壓脈沖不會(huì)引起輸出電壓太大的變化,但是一個(gè)周期內(nèi)總的誤差電壓引起的電壓波形的畸變就比較嚴(yán)重,下面就對(duì)半個(gè)周期內(nèi)誤差電壓對(duì)輸出電壓波形的影響進(jìn)行分析。
1.2死區(qū)時(shí)間引起輸出電壓波形畸變的分析
利用平均電壓的概念[8],假設(shè)載波頻率非常高,不含電流在一個(gè)載波周期內(nèi)過零的情況,則半個(gè)周期內(nèi)誤差電壓脈沖序列的平均值為:
圖3所示為fc=4kHz,M=0.8時(shí),輸出電壓隨著不同的功率因數(shù)角的變化曲線圖,可以看出功率因數(shù)角越高,死區(qū)時(shí)間對(duì)輸出電壓的影響越小。當(dāng)死區(qū)時(shí)間比較短時(shí),功率因數(shù)角的改變對(duì)輸出電壓的影響不大,當(dāng)Td=7μs時(shí),增大功率因數(shù)角可以減小電壓波形的畸變,但是增大功率因數(shù)角會(huì)減小功率因數(shù),影響電機(jī)的效率,在功率因數(shù)角的設(shè)計(jì)中需要綜合考慮這兩方面。
由以上分析可知,當(dāng)載波頻率一定時(shí),死區(qū)時(shí)間引起電壓波形畸變的程度受電壓調(diào)制比的影響,當(dāng)電壓調(diào)制比較低時(shí),死區(qū)時(shí)間對(duì)輸出電壓波形畸變會(huì)相對(duì)增大,這也正是引起電動(dòng)汽車在低速轉(zhuǎn)矩脈動(dòng)的因素之一。從另一方面來看,提高電壓調(diào)制比可以在一定程度上抑制波形畸變,圖5所示為改進(jìn)的控制框圖,通過轉(zhuǎn)速傳感器檢測(cè)電機(jī)的運(yùn)行狀態(tài),當(dāng)電機(jī)低速運(yùn)行時(shí),減少電池輸出的直流母線電壓,從而提高電壓調(diào)制比,來減小死區(qū)時(shí)間對(duì)輸出電壓的影響,通過上述控制調(diào)節(jié)電池的輸出電壓,將電壓調(diào)制比控制在一個(gè)較高的范圍,從而減少死區(qū)時(shí)間引起的電壓波形的畸變。
2.基于PCI9846H的數(shù)據(jù)采集系統(tǒng)設(shè)計(jì)
2.1硬件設(shè)計(jì)與實(shí)現(xiàn)
2.1.1 電壓傳感器、電流傳感器、轉(zhuǎn)矩儀的選型及特性分析
驅(qū)動(dòng)電機(jī)系統(tǒng)的工作電壓和電流范圍比較大,從幾十伏(安)到上千伏(安),這就要求電壓和電流傳感器不僅要有良好的絕緣性,還要將輸入信號(hào)和輸出信號(hào)完全隔離,同時(shí),傳感器的響應(yīng)時(shí)間也應(yīng)優(yōu)先考慮。試驗(yàn)臺(tái)上驅(qū)動(dòng)電機(jī)轉(zhuǎn)速與轉(zhuǎn)矩的測(cè)量需要轉(zhuǎn)矩儀有很好的輸出信號(hào)的穩(wěn)定性和重復(fù)性。結(jié)合電機(jī)試驗(yàn)的要求,本文從傳感器的量程、精度以及動(dòng)態(tài)響應(yīng)時(shí)間方面考慮,分別選擇電壓傳感器CV 3-500,電流傳感器LF 505-S,轉(zhuǎn)矩儀F1i S,其特性如表1所示。
2.1.4 數(shù)據(jù)采集卡
本論文的研究對(duì)數(shù)據(jù)采集卡提出了很高的要求,由上文可知,死區(qū)時(shí)間一般為3~7μs,實(shí)際中IGBT的開關(guān)過程有延時(shí)和滯后,以東芝公司的MG25N2S1型25A/1000V IGBT模塊為例,其電壓上升和下降時(shí)間分別為0.3μs和0.6μs,為了能夠真實(shí)的捕捉死區(qū)時(shí)間引起的電壓波形畸變,工程中用到的采樣率通常為信號(hào)中最高頻率的6-8倍,這就要求數(shù)據(jù)采集卡的采樣率至少要達(dá)到10MS/s。
試驗(yàn)平臺(tái)采用凌華公司生產(chǎn)的PCI-9846H高端數(shù)據(jù)采集卡,這是一款4通道同步并行采集,每通道采樣率高達(dá)16MS/s的多功能數(shù)據(jù)采集卡,該采集卡具有4個(gè)同步單端模擬輸入和16位的高分辨率A/D轉(zhuǎn)換器,同時(shí)PCI-9846H在總諧波失真(THD)、信噪比SNR、無雜散動(dòng)態(tài)范圍(SFDR)等方面性能能夠滿足本文對(duì)試驗(yàn)精度的要求。此外,板載512M Byte內(nèi)存,作為數(shù)據(jù)暫存空間,可以延長連續(xù)采集的時(shí)間,其數(shù)據(jù)傳輸方式采用DMA的方式,無需CPU直接控制傳輸,也沒有中斷處理方式那樣保留現(xiàn)場(chǎng)和恢復(fù)現(xiàn)場(chǎng)的過程,通過硬件為RAM與I/O設(shè)備開辟一條直接傳送數(shù)據(jù)的通路,使CPU的效率大為提高,提高了數(shù)據(jù)采集的實(shí)時(shí)性和動(dòng)態(tài)響應(yīng)特性,該數(shù)據(jù)采集卡能夠滿足本文對(duì)采樣率和精度的研究要求,其主要特性如表2所示。
本文所研究的信號(hào)的頻率較高,因此需要板卡有足夠的帶寬滿足相應(yīng)的研究要求。PCI-9846H-3dB-3dB帶寬為20MHz,能夠滿足本文對(duì)頻譜分析的要求,此外板卡的系統(tǒng)噪聲在±1V時(shí)僅為5.0LSBRMS,其在±1V時(shí)的頻譜特性如圖6所示。
2.1.5 信號(hào)調(diào)理電路
從傳感器得到的信號(hào)大多要經(jīng)過調(diào)理才能進(jìn)入數(shù)據(jù)采集設(shè)備,信號(hào)調(diào)理功能包括放大、隔離、濾波、激勵(lì)、線性化等。由于不同傳感器有不同的特性,因此,除了這些通用功能,還要根據(jù)具體傳感器的特性和要求來設(shè)計(jì)特殊的信號(hào)調(diào)理功能。
本系統(tǒng)所用的信號(hào)調(diào)理板主要實(shí)現(xiàn)兩方面的功能:
(1)實(shí)現(xiàn)傳感器信號(hào)的低通濾波。信號(hào)進(jìn)入計(jì)算機(jī)前必須要經(jīng)過低通濾波,本文由信號(hào)調(diào)理板采用RC低通濾波器來實(shí)現(xiàn)。
(2)對(duì)信號(hào)進(jìn)行轉(zhuǎn)換。對(duì)于模擬信號(hào),PCI-9846H數(shù)據(jù)采集卡只能接收-5V~+5V的電壓信號(hào),而霍爾電壓傳感器輸出的信號(hào)為(0~10)V的電壓信號(hào),霍爾電流傳感器輸出的信號(hào)為(0~100)mA的電流信號(hào),所以必須加入信號(hào)調(diào)理板對(duì)傳感器輸出的信號(hào)進(jìn)行轉(zhuǎn)換。
由以上硬件的選擇確定本系統(tǒng)的硬件拓?fù)浣Y(jié)構(gòu)如圖7所示,圖8所示為試驗(yàn)現(xiàn)場(chǎng)布線圖。
2.2基于LABVIEW的系統(tǒng)軟件設(shè)計(jì)
LABVIEW集數(shù)據(jù)采集、儀器控制、工業(yè)自動(dòng)化等眾多功能于一身,為圖形化虛擬儀器的開發(fā)提供了最佳的平臺(tái)[9]。本文用LABVIEW進(jìn)行數(shù)據(jù)采集系統(tǒng)上位機(jī)軟件的編制,完成數(shù)據(jù)采集的任務(wù):
(1) 對(duì)試驗(yàn)環(huán)境和測(cè)試電機(jī)的信息進(jìn)行登記;
(2) 測(cè)試項(xiàng)目的選擇以及試驗(yàn)前的標(biāo)定;
(3) 對(duì)數(shù)據(jù)進(jìn)行計(jì)算,存儲(chǔ)以及屏幕顯示等。
在使用PCI-9846H板卡之前需要安裝板卡驅(qū)動(dòng),圖9所示為安裝好了板卡驅(qū)動(dòng)之后,在設(shè)備管理器會(huì)看到相應(yīng)硬件設(shè)備的增加。與此同時(shí),為了能夠應(yīng)用LABVIEW進(jìn)行上位機(jī)數(shù)據(jù)采集系統(tǒng)的開發(fā),需要安裝DAQPilot中支持LABVIEW的板卡驅(qū)動(dòng)程序。除此之外,在LABVIEW中使用該板卡進(jìn)行數(shù)據(jù)采集之前必須通過DAQMASTER為該塊板卡進(jìn)行相關(guān)的初始化工作,其中包括緩存區(qū)大小的設(shè)置,通道名稱的設(shè)置等初始化工作,圖10-11顯示了利用DAQMASTER對(duì)PCI-9846H進(jìn)行相關(guān)的初始化工作。
在試驗(yàn)中,對(duì)于電量和非電量信號(hào)采集之前都選擇靜態(tài)標(biāo)定的方法對(duì)其進(jìn)行標(biāo)定,其中對(duì)于控制器輸入電壓/電流以及控制器輸出電壓/電流利用PCI-9846H板卡的四個(gè)通道進(jìn)行同步采集。在轉(zhuǎn)矩/轉(zhuǎn)速測(cè)量時(shí),雖然轉(zhuǎn)矩儀輸出的是頻率信號(hào),但是本文按照模擬量對(duì)其進(jìn)行采集,通過在程序中對(duì)輸入信號(hào)的處理計(jì)算出信號(hào)的頻率從而能夠得到相應(yīng)的轉(zhuǎn)矩和轉(zhuǎn)速值,這樣可以在程序中減少一部分代碼量提高程序的執(zhí)行效率同時(shí)利用板載同步時(shí)鐘保證轉(zhuǎn)矩/轉(zhuǎn)速采集的同步性。
2.3試驗(yàn)結(jié)果分析
本文利用基于PCI-9846H的數(shù)據(jù)采集系統(tǒng)完成了對(duì)電機(jī)電量與非電量的采集,圖16所示為直流母線電壓電流與交流電壓電流動(dòng)態(tài)數(shù)據(jù)波形,圖17和圖18分別顯示了改進(jìn)前后電流的輸出波形以及轉(zhuǎn)矩的輸出波形。
試驗(yàn)結(jié)果表明基于PCI-9846H的數(shù)據(jù)采集系統(tǒng)具有高采樣率和高采樣精度,能夠滿足本文對(duì)死區(qū)時(shí)間引起的電壓波形畸變信號(hào)捕捉的要求,對(duì)采集數(shù)據(jù)的分析表明本文所提出的根據(jù)電機(jī)的工作狀態(tài)調(diào)節(jié)直流母線電壓保持電壓調(diào)制比在較高的范圍內(nèi)的方法能夠很好的改善電流與轉(zhuǎn)矩的輸出波形,特別是在電機(jī)低速工況時(shí)效果尤為明顯,進(jìn)而能夠減少死區(qū)時(shí)間對(duì)電機(jī)在低速工況時(shí)性能的影響。
? ? ? ?作者信息:
? ? ? ? 呂晨光,宋強(qiáng),靳建波(北京理工大學(xué),機(jī)械與車輛學(xué)院,北京,100081)
參考文獻(xiàn)
[1]孫逢春,程夕明。電動(dòng)汽車動(dòng)力驅(qū)動(dòng)系統(tǒng)現(xiàn)狀及發(fā)展[J]。汽車工程,2000.022(004).220~224,229.
[2]翟麗。電動(dòng)汽車交流感應(yīng)電機(jī)驅(qū)動(dòng)控制系統(tǒng)及其特性研究[D]。北京理工大學(xué):2004
[3]C.C.Chan,K.T.Chau. Modern Electric Vehicle Technology. UK: Oxford University Press, 2001
[4]宋強(qiáng)。電動(dòng)車輛動(dòng)力驅(qū)動(dòng)系統(tǒng)測(cè)試平臺(tái)設(shè)計(jì)開發(fā)及試驗(yàn)研究[D]。北京理工大學(xué):2004.
[5]董玉剛。電傳動(dòng)履帶車輛永磁同步電機(jī)控制技術(shù)研究[D]。北京理工大學(xué):2010
[6]Choi.J.W, “Inverter output voltage synthesis using novel dead time compensation”,IEEE
Transaction on Power Electronics, Vol.11:221-227, 1996.
[7]劉明基等。逆變器死區(qū)時(shí)間對(duì)永磁同步電動(dòng)機(jī)系統(tǒng)的影響[J]。微特電機(jī),2001.3:12-15.
[8]章建鋒。死區(qū)時(shí)間對(duì)輸出電壓的影響分析[J]。電力電子技術(shù),2007.8:31-33.
[9]顧進(jìn)超。車輛電傳動(dòng)試驗(yàn)臺(tái)數(shù)據(jù)采集系統(tǒng)的開發(fā)[D]。北京理工大學(xué):2004
評(píng)論
查看更多