在這個例子中我們用到了一種特殊的函數:lambda表達式。Lambda表達式在Python中是一種匿名函數,lambda關鍵字后面跟輸入參數,然后冒號后面是返回值(的表達式),比如上邊例子中就是一個取下標1元素的函數。當然,還是那句話,萬物皆對象,給lambda表達式取名字也是一點問題沒有的:
some_ops = lambda x, y: x + y + x*y + x**y
some_ops(2, 3) # 2 + 3 + 2*3 + 2^3 = 19
生成器(Generator)
生成器是迭代器的一種,形式上看和函數很像,只是把return換成了yield,在每次調用的時候,都會執行到yield并返回值,同時將當前狀態保存,等待下次執行到yield再繼續:
# 從10倒數到0
def countdown(x):
while x >= 0:
yield x
x -= 1
for i in countdown(10):
print(i)
# 打印小于100的斐波那契數
def fibonacci(n):
a = 0
b = 1
while b < n:
yield b
a, b = b, a + b
for x in fibonacci(100):
print(x)
生成器和所有可迭代結構一樣,可以通過next()函數返回下一個值,如果迭代結束了則拋出StopIteration異常:
a = fibonacci(3)
print(next(a)) # 1
print(next(a)) # 1
print(next(a)) # 2
print(next(a)) # 拋出StopIteration異常
Python3.3以上可以允許yield和return同時使用,return的是異常的說明信息:
# Python3.3以上可以return返回異常的說明
def another_fibonacci(n):
a = 0
b = 1
while b < n:
yield b
a, b = b, a + b
return "No more ..."
a = another_fibonacci(3)
print(next(a)) # 1
print(next(a)) # 1
print(next(a)) # 2
print(next(a)) # 拋出StopIteration異常并打印No more消息
類(Class)
Python中的類的概念和其他語言相比沒什么不同,比較特殊的是protected和private在Python中是沒有明確限制的,一個慣例是用單下劃線開頭的表示protected,用雙下劃線開頭的表示private:
class A:
"""Class A"""
def __init__(self, x, y, name):
self.x = x
self.y = y
self._name = name
def introduce(self):
print(self._name)
def greeting(self):
print("What's up!")
def __l2norm(self):
return self.x**2 + self.y**2
def cal_l2norm(self):
return self.__l2norm()
a = A(11, 11, 'Leonardo')
print(A.__doc__) # "Class A"
a.introduce() # "Leonardo"
a.greeting() # "What's up!"
print(a._name) # 可以正常訪問
print(a.cal_l2norm()) # 輸出11*11+11*11=242
print(a._A__l2norm()) # 仍然可以訪問,只是名字不一樣
print(a.__l2norm()) # 報錯: 'A' object has no attribute '__l2norm'
類的初始化使用的是__init__(self,),所有成員變量都是self的,所以以self.開頭。可以看到,單下劃線開頭的變量是可以直接訪問的,而雙下劃線開頭的變量則觸發了Python中一種叫做name mangling的機制,其實就是名字變了下,仍然可以通過前邊加上“_類名”的方式訪問。也就是說Python中變量的訪問權限都是靠自覺的。類定義中緊跟著類名字下一行的字符串叫做docstring,可以寫一些用于描述類的介紹,如果有定義則通過“類名.__doc__”訪問。這種前后都加雙下劃線訪問的是特殊的變量/方法,除了__doc__和__init__還有很多,這里就不展開講了。
Python中的繼承也非常簡單,最基本的繼承方式就是定義類的時候把父類往括號里一放就行了:
class B(A):
"""Class B inheritenced from A"""
def greeting(self):
print("How's going!")
b = B(12, 12, 'Flaubert')
b.introduce() # Flaubert
b.greeting() # How's going!
print(b._name()) # Flaubert
print(b._A__l2norm()) # “私有”方法,必須通過_A__l2norm訪問
map, reduce和filter
map可以用于對可遍歷結構的每個元素執行同樣的操作,批量操作:
map(lambda x: x**2, [1, 2, 3, 4]) # [1, 4, 9, 16]
map(lambda x, y: x + y, [1, 2, 3], [5, 6, 7]) # [6, 8, 10]
reduce則是對可遍歷結構的元素按順序進行兩個輸入參數的操作,并且每次的結果保存作為下次操作的第一個輸入參數,還沒有遍歷的元素作為第二個輸入參數。這樣的結果就是把一串可遍歷的值,減少(reduce)成一個對象:
reduce(lambda x, y: x + y, [1, 2, 3, 4]) # ((1+2)+3)+4=10
filter顧名思義,根據條件對可遍歷結構進行篩選:
filter(lambda x: x % 2, [1, 2, 3, 4, 5]) # 篩選奇數,[1, 3, 5]
需要注意的是,對于filter和map,在Python2中返回結果是列表,Python3中是生成器。
列表生成(list comprehension)
列表生成是Python2.0中加入的一種語法,可以非常方便地用來生成列表和迭代器,比如上節中map的兩個例子和filter的一個例子可以用列表生成重寫為:
[x**2 for x in [1, 2, 3, 4]] # [1, 4, 9 16]
[sum(x) for x in zip([1, 2, 3], [5, 6, 7])] # [6, 8, 10]
[x for x in [1, 2, 3, 4, 5] if x % 2] # [1, 3, 5]
評論
查看更多