多線程開發在 Linux 平臺上已經有成熟的 Pthread 庫支持。其涉及的多線程開發的最基本概念主要包含三點:線程,互斥鎖,條件。其中,線程操作又分線程的創建,退出,等待 3 種?;コ怄i則包括 4 種操作,分別是創建,銷毀,加鎖和解鎖。條件操作有 5 種操作:創建,銷毀,觸發,廣播和等待。其他的一些線程擴展概念,如信號燈等,都可以通過上面的三個基本元素的基本操作封裝出來。
線程,互斥鎖,條件在 Linux 平臺上對應的 API 可以用表 1 歸納。為了方便熟悉 Windows 線程編程的讀者熟悉 Linux 多線程開發的 API,我們在表中同時也列出 Windows SDK 庫中所對應的 API 名稱。
對象 操作 Linux Pthread API Windows SDK 庫對應 API 線程 創建 pthread_create CreateThread 退出 pthread_exit ThreadExit 等待 pthread_join WaitForSingleObject 互斥鎖 創建 pthread_mutex_init CreateMutex 銷毀 pthread_mutex_destroy CloseHandle 加鎖 pthread_mutex_lock WaitForSingleObject 解鎖 pthread_mutex_unlock ReleaseMutex 條件 創建 pthread_cond_init CreateEvent 銷毀 pthread_cond_destroy CloseHandle 觸發 pthread_cond_signal SetEvent 廣播 pthread_cond_broadcast SetEvent / ResetEvent 等待 pthread_cond_wait / pthread_cond_timedwait SingleObjectAndWait
多線程開發在 Linux 平臺上已經有成熟的 Pthread 庫支持。其涉及的多線程開發的最基本概念主要包含三點:線程,互斥鎖,條件。其中,線程操作又分線程的創建,退出,等待 3 種。互斥鎖則包括 4 種操作,分別是創建,銷毀,加鎖和解鎖。條件操作有 5 種操作:創建,銷毀,觸發,廣播和等待。其他的一些線程擴展概念,如信號燈等,都可以通過上面的三個基本元素的基本操作封裝出來。
?
?
互斥鎖是多線程編程中基本的概念,在開發中被廣泛使用。其調用次序層次清晰簡單:建鎖,加鎖,解鎖,銷毀鎖。但是需要注意的是,與諸如 Windows 平臺的互斥變量不同,在默認情況下,Linux 下的同一線程無法對同一互斥鎖進行遞歸加速,否則將發生死鎖。
所謂遞歸加鎖,就是在同一線程中試圖對互斥鎖進行兩次或兩次以上的行為。其場景在 Linux 平臺上的代碼可由清單 1 所示。
// 通過默認條件建鎖 pthread_mutex_t *theMutex = new pthread_mutex_t; pthread_mutexattr_t attr; pthread_mutexattr_init(&attr); pthread_mutex_init(theMutex,&attr); pthread_mutexattr_destroy(&attr); // 遞歸加鎖 pthread_mutex_lock (theMutex); pthread_mutex_lock (theMutex); pthread_mutex_unlock (theMutex); pthread_mutex_unlock (theMutex);
在以上代碼場景中,問題將出現在第二次加鎖操作。由于在默認情況下,Linux 不允許同一線程遞歸加鎖,因此在第二次加鎖操作時線程將出現死鎖。
Linux 互斥變量這種奇怪的行為或許對于特定的某些場景會所有用處,但是對于大多數情況下看起來更像是程序的一個 bug 。畢竟,在同一線程中對同一互斥鎖進行遞歸加鎖在尤其是二次開發中經常會需要。
這個問題與互斥鎖的中的默認 recursive 屬性有關。解決問題的方法就是顯式地在互斥變量初始化時將設置起 recursive 屬性。基于此,以上代碼其實稍作修改就可以很好的運行,只需要在初始化鎖的時候加設置一個屬性。請看清單 2 。
pthread_mutexattr_init(&attr); // 設置 recursive 屬性 pthread_mutexattr_settype(&attr,PTHREAD_MUTEX_RECURSIVE_NP); pthread_mutex_init(theMutex,&attr);
因此,建議盡量設置 recursive 屬性以初始化 Linux 的互斥鎖,這樣既可以解決同一線程遞歸加鎖的問題,又可以避免很多情況下死鎖的發生。這樣做還有一個額外的好處,就是可以讓 Windows 和 Linux 下讓鎖的表現統一。
?
條件變量的置位和復位有兩種常用模型:第一種模型是當條件變量置位(signaled)以后,如果當前沒有線程在等待,其狀態會保持為置位(signaled),直到有等待的線程進入被觸發,其狀態才會變為復位(unsignaled),這種模型的采用以 Windows 平臺上的 Auto-set Event 為代表。其狀態變化如圖 1 所示:
第二種模型則是 Linux 平臺的 Pthread 所采用的模型,當條件變量置位(signaled)以后,即使當前沒有任何線程在等待,其狀態也會恢復為復位(unsignaled)狀態。其狀態變化如圖 2 所示:
具體來說,Linux 平臺上 Pthread 下的條件變量狀態變化模型是這樣工作的:調用 pthread_cond_signal() 釋放被條件阻塞的線程時,無論存不存在被阻塞的線程,條件都將被重新復位,下一個被條件阻塞的線程將不受影響。而對于 Windows,當調用 SetEvent 觸發 Auto-reset 的 Event 條件時,如果沒有被條件阻塞的線程,那么條件將維持在觸發狀態,直到有新的線程被條件阻塞并被釋放為止。
這種差異性對于那些熟悉 Windows 平臺上的條件變量狀態模型而要開發 Linux 平臺上多線程的程序員來說可能會造成意想不到的尷尬結果。試想要實現一個旅客坐出租車的程序:旅客在路邊等出租車,調用條件等待。出租車來了,將觸發條件,旅客停止等待并上車。一個出租車只能搭載一波乘客,于是我們使用單一觸發的條件變量。這個實現邏輯在第一個模型下即使出租車先到,也不會有什么問題,其過程如圖 3 所示:
然而如果按照這個思路來在 Linux 上來實現,代碼看起來可能是清單 3 這樣。
…… // 提示出租車到達的條件變量 pthread_cond_t taxiCond; // 同步鎖 pthread_mutex_t taxiMutex; // 旅客到達等待出租車 void * traveler_arrive(void * name) { cout<< ” Traveler: ” <<(char *)name<< ” needs a taxi now! ” < 好的,運行一下,看看結果如清單 4 。 Taxi Jack arrives. Traveler Susan needs a taxi now! Taxi Mike arrives. Traveler Susan now got a taxi. 其過程如圖 4 所示: 通過對比結果,你會發現同樣的邏輯,在 Linux 平臺上運行的結果卻完全是兩樣。對于在 Windows 平臺上的模型一, Jack 開著出租車到了站臺,觸發條件變量。如果沒顧客,條件變量將維持觸發狀態,也就是說 Jack 停下車在那里等著。直到 Susan 小姐來了站臺,執行等待條件來找出租車。 Susan 搭上 Jack 的出租車離開,同時條件變量被自動復位。 但是到了 Linux 平臺,問題就來了,Jack 到了站臺一看沒人,觸發的條件變量被直接復位,于是 Jack 排在等待隊列里面。來遲一秒的 Susan 小姐到了站臺卻看不到在那里等待的 Jack,只能等待,直到 Mike 開車趕到,重新觸發條件變量,Susan 才上了 Mike 的車。這對于在排隊系統前面的 Jack 是不公平的,而問題癥結是在于 Linux 平臺上條件變量觸發的自動復位引起的一個 Bug 。 條件變量在 Linux 平臺上的這種模型很難說好壞。但是在實際開發中,我們可以對代碼稍加改進就可以避免這種差異的發生。由于這種差異只發生在觸發沒有被線程等待在條件變量的時刻,因此我們只需要掌握好觸發的時機即可。最簡單的做法是增加一個計數器記錄等待線程的個數,在決定觸發條件變量前檢查下該變量即可。改進后 Linux 函數如清單 5 所示。 …… // 提示出租車到達的條件變量 pthread_cond_t taxiCond; // 同步鎖 pthread_mutex_t taxiMutex; // 旅客人數,初始為 0 int travelerCount=0; // 旅客到達等待出租車 void * traveler_arrive(void * name) { cout<< ” Traveler: ” <<(char *)name<< ” needs a taxi now! ” < 因此我們建議在 Linux 平臺上要出發條件變量之前要檢查是否有等待的線程,只有當有線程在等待時才對條件變量進行觸發。 ? 在 Linux 調用 pthread_cond_wait 進行條件變量等待操作時,我們增加一個互斥變量參數是必要的,這是為了避免線程間的競爭和饑餓情況。但是當條件等待返回時候,需要注意的是一定不要遺漏對互斥變量進行解鎖。 Linux 平臺上的 pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex) 函數返回時,互斥鎖 mutex 將處于鎖定狀態。因此之后如果需要對臨界區數據進行重新訪問,則沒有必要對 mutex 就行重新加鎖。但是,隨之而來的問題是,每次條件等待以后需要加入一步手動的解鎖操作。正如前文中乘客等待出租車的 Linux 代碼如清單 6 所示: void * traveler_arrive(void * name) { cout<< ” Traveler: ” <<(char *)name<< ” needs a taxi now! ” < 這一點對于熟悉 Windows 平臺多線程開發的開發者來說尤為重要。 Windows 上的 SignalObjectAndWait() 函數是常與 Linux 平臺上的 pthread_cond_wait() 函數被看作是跨平臺編程時的一對等價函數。但是需要注意的是,兩個函數退出時的狀態是不一樣的。在 Windows 平臺上,SignalObjectAndWait(HANDLE a, HANDLE b, …… ) 方法在調用結束返回時的狀態是 a 和 b 都是置位(signaled)狀態,在普遍的使用方法中,a 經常是一個 Mutex 變量,在這種情況下,當返回時,Mutex a 處于解鎖狀態(signaled),Event b 處于置位狀態(signaled), 因此,對于 Mutex a 而言,我們不需要考慮解鎖的問題。而且,在 SignalObjectAndWait() 之后,如果需要對臨界區數據進行重新訪問,都需要調用 WaitForSingleObject() 重新加鎖。這一點剛好與 Linux 下的 pthread_cond_wait() 完全相反。 Linux 對于 Windows 的這一點額外解鎖的操作區別很重要,一定得牢記。否則從 Windows 移植到 Linux 上的條件等待操作一旦忘了結束后的解鎖操作,程序將肯定會發生死鎖。 ? 超時是多線程編程中一個常見的概念。例如,當你在 Linux 平臺下使用 pthread_cond_timedwait() 時就需要指定超時這個參數,以便這個 API 的調用者最多只被阻塞指定的時間間隔。但是如果你是第一次使用這個 API 時,首先你需要了解的就是這個 API 當中超時參數的特殊性(就如本節標題所提示的那樣)。我們首先來看一下這個 API 的定義。 pthread_cond_timedwait() 定義請看清單 7 。 int pthread_cond_timedwait(pthread_cond_t *restrict cond, pthread_mutex_t *restrict mutex, const struct timespec *restrict abstime); 參數 abstime 在這里用來表示和超時時間相關的一個參數,但是需要注意的是它所表示的是一個絕對時間,而不是一個時間間隔數值,只有當系統的當前時間達到或者超過 abstime 所表示的時間時,才會觸發超時事件。這對于擁有 Windows 平臺線程開發經驗的人來說可能尤為困惑。因為 Windows 平臺下所有的 API 等待參數(如 SignalObjectAndWait,等)都是相對時間, 假設我們指定相對的超時時間參數如 dwMilliseconds (單位毫秒)來調用和超時相關的函數,這樣就需要將 dwMilliseconds 轉化為 Linux 下的絕對時間參數 abstime 使用。常用的轉換方法如清單 8 所示: /* get the current time */ struct timeval now; gettimeofday(&now, NULL); /* add the offset to get timeout value */ abstime ->tv_nsec = now.tv_usec * 1000 + (dwMilliseconds % 1000) * 1000000; abstime ->tv_sec = now.tv_sec + dwMilliseconds / 1000; Linux 的絕對時間看似簡單明了,卻是開發中一個非常隱晦的陷阱。而且一旦你忘了時間轉換,可以想象,等待你的錯誤將是多么的令人頭疼:如果忘了把相對時間轉換成絕對時間,相當于你告訴系統你所等待的超時時間是過去式的 1970 年 1 月 1 號某個時間段,于是操作系統毫不猶豫馬上送給你一個 timeout 的返回值,然后你會舉著拳頭抱怨為什么另外一個同步線程耗時居然如此之久,并一頭扎進尋找耗時原因的深淵里。 ? 在 Linux 平臺下,當處理線程結束時需要注意的一個問題就是如何讓一個線程善始善終,讓其所占資源得到正確釋放。在 Linux 平臺默認情況下,雖然各個線程之間是相互獨立的,一個線程的終止不會去通知或影響其他的線程。但是已經終止的線程的資源并不會隨著線程的終止而得到釋放,我們需要調用 pthread_join() 來獲得另一個線程的終止狀態并且釋放該線程所占的資源。 Pthread_join() 函數的定義如清單 9 。 int pthread_join(pthread_t th, void **thread_return); 調用該函數的線程將掛起,等待 th 所表示的線程的結束。 thread_return 是指向線程 th 返回值的指針。需要注意的是 th 所表示的線程必須是 joinable 的,即處于非 detached(游離)狀態;并且只可以有唯一的一個線程對 th 調用 pthread_join() 。如果 th 處于 detached 狀態,那么對 th 的 pthread_join() 調用將返回錯誤。 如果你壓根兒不關心一個線程的結束狀態,那么也可以將一個線程設置為 detached 狀態,從而來讓操作系統在該線程結束時來回收它所占的資源。將一個線程設置為 detached 狀態可以通過兩種方式來實現。一種是調用 pthread_detach() 函數,可以將線程 th 設置為 detached 狀態。其申明如清單 10 。 int pthread_detach(pthread_t th); 另一種方法是在創建線程時就將它設置為 detached 狀態,首先初始化一個線程屬性變量,然后將其設置為 detached 狀態,最后將它作為參數傳入線程創建函數 pthread_create(),這樣所創建出來的線程就直接處于 detached 狀態。方法如清單 11 。 ………………………………… .. pthread_t tid; pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); pthread_create(&tid, &attr, THREAD_FUNCTION, arg); 總之為了在使用 Pthread 時避免線程的資源在線程結束時不能得到正確釋放,從而避免產生潛在的內存泄漏問題,在對待線程結束時,要確保該線程處于 detached 狀態,否著就需要調用 pthread_join() 函數來對其進行資源回收。 ? ? 本文以上部分詳細介紹了 Linux 的多線程編程的 5 條高效開發經驗。另外你也可以考慮嘗試其他一些開源類庫來進行線程開發。 1. Boost 庫 Boost 庫來自于由 C++ 標準委員會類庫工作組成員發起,致力于為 C++ 開發新的類庫的 Boost 組織。雖然該庫本身并不是針對多線程而產生,但是發展至今,其已提供了比較全面的多線程編程的 API 支持。 Boost 庫對于多線程支持的 API 風格上更類似于 Linux 的 Pthread 庫,差別在于其將線程,互斥鎖,條件等線程開發概念都封裝成了 C++ 類,以方便開發調用。 Boost 庫目前對跨平臺支持的很不錯,不僅支持 Windows 和 Linux ,還支持各種商用的 Unix 版本。如果開發者想使用高穩定性的統一線程編程接口減輕跨平臺開發的難度, Boost 庫將是首選。 2. ACE ACE 全稱是 ADAPTIVE Communication Environment,它是一個免費的,開源的,面向對象的工具框架,用以開發并發訪問的軟件。由于 ACE 最初是面向網絡服務端的編程開發,因此對于線程開發的工具庫它也能提供很全面的支持。其支持的平臺也很全面,包括 Windows,Linux 和各種版本 Unix 。 ACE 的唯一問題是如果僅僅是用于線程編程,其似乎顯得有些過于重量級。而且其較復雜的配置也讓其部署對初學者而言并非易事。
評論
查看更多