色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

人臉識別新突破 半張臉也能100%識別

傳感器技術(shù) ? 來源:fqj ? 2019-05-10 14:54 ? 次閱讀

眾所周知,人臉識別在攝像頭無法捕捉到完整面部圖像的情況下很難獲得理想的效果。最近布拉德福德大學(xué)的研究人員在不完整面部識別方面獲得了突破性進(jìn)展,實驗表明,掃描整個面部的3/4、甚至1/2的識別準(zhǔn)確率能夠達(dá)到100%!

基于計算機的人臉識別已經(jīng)成為一種成熟且可靠的機制,實際上已被應(yīng)用于許多訪問控制場景,不過目前面部識別或認(rèn)證,主要使用全正臉面部圖像的“完美”數(shù)據(jù)來執(zhí)行。但實際上,有許多情況下比如閉路電視攝像機往往只能拍到臉的一側(cè),或者如果被拍攝者戴了帽子、口罩等遮擋物,就無法獲得完整的正臉。因此,使用不完整面部數(shù)據(jù)的面部識別是一個亟待開發(fā)的研究領(lǐng)域。

來自布拉德福德大學(xué)的研究團(tuán)隊的最新研究在不完整面部識別方面,取得了突破性進(jìn)展,實驗使用最先進(jìn)的基于卷積神經(jīng)網(wǎng)絡(luò)的架構(gòu)以及預(yù)先訓(xùn)練的VGG-Face模型,使用余弦相似度和線性支持向量機來測試識別率。團(tuán)隊在兩個公開可用的數(shù)據(jù)集(受控的巴西FEI和不受控制的LFW)上進(jìn)行了實驗。

實驗表明,掃描整個面部的3/4、甚至1/2的識別準(zhǔn)確率能夠達(dá)到100%!除此之外,團(tuán)隊還研究了面部的某個獨立的部位,比如鼻子、臉頰、前額或嘴巴的識別率,以及圖像的旋轉(zhuǎn)和縮放對面部識別主體的影響。結(jié)果發(fā)現(xiàn),如果只針對面部的某個獨立的部位,比如鼻子、臉頰、前額或嘴巴,識別率總是相對較低。

據(jù)悉,這是第一個使用機器學(xué)習(xí)來測試面部不同部位識別率的研究,論文已發(fā)表在Future Generation Computer Systems上。下面新智元對本次實驗進(jìn)行介紹。

人類可以不受環(huán)境影響的

識別人臉,那么計算機也可以嗎?

面部是人類生命中視覺系統(tǒng)中繪制得最多的圖片,所以大部分人類擁有卓越的面部識別能力。一般來說,我們不需要像面部識別AI那樣必須正視別人的正臉才能識別出對方,通常對于我們只要一瞥即可分辨。

普遍認(rèn)為大腦通過記住重要的細(xì)節(jié),例如與眼睛,鼻子,前額,臉頰和嘴巴相對應(yīng)的關(guān)鍵特征的形狀和顏色,對面部進(jìn)行區(qū)分。此外,人類大腦可以應(yīng)對不同光線環(huán)境下、不同面部表情,以及遠(yuǎn)處面部的顯著變化。

然而,與此相反,任何在光線、表情、姿勢和即眼鏡或胡子等等的變化,都可能對計算機的識別率產(chǎn)生巨大影響。不過,因為計算機處理海量數(shù)據(jù)的能力不斷提高,可以認(rèn)為機器算法(例如CNN)至少在面部匹配方面擁有優(yōu)異的表現(xiàn)。

順著這個邏輯,研究團(tuán)隊使用有遮擋的不完整人臉照片作為測試集,下面是一個測試集的示例圖片,以及計算機對不完整人臉照片的識別過程。

示例圖片

人臉識別新突破 半張臉也能100%識別

識別過程

使用CNN和VGG-Face,

利用兩個分類器進(jìn)行不完整人臉的識別

團(tuán)隊主要研究面部的不同部分如何有利于識別,以及在機器學(xué)習(xí)場景中如何在對面部照片進(jìn)行不同程度旋轉(zhuǎn)、縮放的識別。實驗使用基于CNN的架構(gòu)以及預(yù)訓(xùn)練的VGG-Face模型來提取特征。然后使用兩個分類器,即余弦相似度(CS)和線性SVM來測試識別率。下圖表現(xiàn)了特征提取步驟的概述:

遮擋臉部的示例圖片

人臉識別新突破 半張臉也能100%識別

基于VGGF的特征提取過程

VGG-Face模型

目前最流行和廣泛應(yīng)用于人臉識別的是VGGF模型,由Oxford Visual Geometry Group開發(fā)。該模型在一個超過2.6 K個體的2.6M面部圖像的巨大數(shù)據(jù)集上進(jìn)行訓(xùn)練。

在VGGF中,其中13層是卷積網(wǎng)絡(luò),其他是ReLU、pooling的混合體,最后一層是softmax。

人臉識別新突破 半張臉也能100%識別

13個卷積層

為了確定VGGF模型中用于面部特征提取的最佳層,通常必須進(jìn)行一些試驗和錯誤實驗。在本實驗中,團(tuán)隊發(fā)現(xiàn)最好的結(jié)果來自第34層。值得注意的是,該層是完全連接的層,位于神經(jīng)網(wǎng)絡(luò)的末端,這意味著提取的特征代表代表了全臉。

特征分類:為什么使用

余弦相似度和線性SVM

本次實驗中,研究團(tuán)隊使用了余弦相似度(CS)和線性SVM分類器。做出這樣的選擇基于兩個原因:首先,團(tuán)隊測試了其他分類器后發(fā)現(xiàn)CS和線性SVM的效果最好;其次,通過實驗和分析,團(tuán)隊發(fā)現(xiàn)這兩個分類器能夠更準(zhǔn)確地分離數(shù)據(jù)。

余弦相似度

兩個向量間的余弦值可以通過使用歐幾里得點積公式求出:

人臉識別新突破 半張臉也能100%識別

給定兩個屬性向量, A 和B,其余弦相似性θ由點積和向量長度給出,如下所示:

人臉識別新突破 半張臉也能100%識別

這里的Ai和Bi分別代表向量A和B的各分量。

本次實驗需要計算CS以通過使用Eqs找到測試圖像和訓(xùn)練圖像之間的最小距離。如圖8所示:

人臉識別新突破 半張臉也能100%識別

線性SVM

SVM是一個二元分類算法,線性分類和非線性分類都支持。經(jīng)過演進(jìn),現(xiàn)在也可以支持多元分類,同時經(jīng)過擴展,也能應(yīng)用于回歸問題。在本實驗中,研究團(tuán)隊對兩種SVM都進(jìn)行了測試,發(fā)現(xiàn)當(dāng)使用部分面部作為測試集的時候,線性SVM能夠獲得更好的效果。

例如,對于右臉頰,線性SVM的識別準(zhǔn)確率達(dá)到了24.44%,而具有徑向基函數(shù)的非線性SVM的識別率僅為2.77%。

遮掉半張臉,

準(zhǔn)確率也能高達(dá)100%!

這項工作提供了一組全面的實驗,使用面部的不同部分進(jìn)行面部識別。

利用了兩個流行的人臉數(shù)據(jù)集的人臉圖像,即FEI和LFW數(shù)據(jù)集。使用級聯(lián)物體檢測器對兩個數(shù)據(jù)庫中的所有圖像進(jìn)行裁剪以盡可能地去除背景,以便提取面部和內(nèi)部面部特征。但是,對于某些具有非常復(fù)雜背景的圖像,如LFW數(shù)據(jù)庫的情況,作者手動裁剪這些面部。

在這項工作中,已經(jīng)進(jìn)行了許多遮擋設(shè)置,以驗證該方法可以處理正常和遮擋的面部識別任務(wù)。為此,進(jìn)行了兩組主要的實驗:一組不使用局部,旋轉(zhuǎn)和縮放的面部作為訓(xùn)練面部數(shù)據(jù)的一部分,另一部分使用部分,旋轉(zhuǎn)和縮放的面部作為訓(xùn)練的一部分。

在每種情況下,使用兩個分類器進(jìn)行了14個涉及部分,旋轉(zhuǎn)和縮小人臉的子實驗。出于訓(xùn)練目的,使用了每個受試者70%的圖像,這些圖像也通過諸如填充和翻轉(zhuǎn)之類的操作來增強。在每種情況下,剩余的30%的圖像用于測試。

從FEI數(shù)據(jù)集中采樣面部數(shù)據(jù)

用于測試FEI數(shù)據(jù)集上識別率的面部部分

人臉識別新突破 半張臉也能100%識別

在FEI數(shù)據(jù)庫中使用基于面部部分的SVM和CS分類器的面部識別率 - 在訓(xùn)練中不使用/使用面部的面部部分

在FEI數(shù)據(jù)集上顯示面旋轉(zhuǎn)(10°到180°)

人臉識別新突破 半張臉也能100%識別

在FEI數(shù)據(jù)集上使用SVM和CS分類器的人臉識別率(基于訓(xùn)練集中沒有和有旋轉(zhuǎn)人臉圖片)

一個在FEI數(shù)據(jù)集中縮小(10%到90%)人臉的例子

人臉識別新突破 半張臉也能100%識別

利用SVM和CS分類器對FEI中縮小后的人臉進(jìn)行快速識別

一些來自LFW數(shù)據(jù)集的人臉圖像樣本

來自LFW數(shù)據(jù)庫的面部部分樣本

人臉識別新突破 半張臉也能100%識別

在LFW數(shù)據(jù)集上,分別使用SVM和CS兩種分類器對訓(xùn)練中未使用/使用的人臉各部分進(jìn)行識別

人臉識別新突破 半張臉也能100%識別

在LFW數(shù)據(jù)集上使用基于SVM和CS分類器的人臉旋轉(zhuǎn)的人臉識別率(在沒有和使用單個旋轉(zhuǎn)面作為訓(xùn)練數(shù)據(jù)的情況下)

人臉識別新突破 半張臉也能100%識別

在LFW數(shù)據(jù)庫上,基于SVM和CS分類器的圖像縮放識別率

使用CS進(jìn)行正確匹配的結(jié)果,對于嘴的部分

使用CS測量的錯誤匹配的結(jié)果,對于嘴的部分

正確匹配的結(jié)果使用CS測量,為右臉頰

應(yīng)用前景

研究團(tuán)隊負(fù)責(zé)人Hassan Ugail教授表示這個結(jié)果展示了不完整面部識別的美好前景:“現(xiàn)在已經(jīng)證明,可以從僅顯示部分臉部的圖像中,獲得非常準(zhǔn)確的面部識別率,并且已經(jīng)確定哪些部分的識別準(zhǔn)確率更高,這為該技術(shù)應(yīng)用于安防或預(yù)防犯罪等方面,開辟了更大的可能性。”

不過Hassan Ugail教授還表示,目前實驗還需要在更大的數(shù)據(jù)集上進(jìn)行驗證。顯然,將來很可能用于面部識別的圖像數(shù)據(jù)庫也需要包含不完整面部的圖像。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 人臉識別
    +關(guān)注

    關(guān)注

    76

    文章

    4011

    瀏覽量

    81867

原文標(biāo)題:鬼都藏不住,人臉識別新突破!就算遮住半張臉也能100%被識別

文章出處:【微信號:WW_CGQJS,微信公眾號:傳感器技術(shù)】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    人臉識別技術(shù)的可行性在于矛盾具有什么性

    人臉識別技術(shù)的可行性在于矛盾具有普遍性。 一、引言 人臉識別技術(shù)作為人工智能領(lǐng)域的一項重要技術(shù),近年來得到了廣泛的關(guān)注和應(yīng)用。然而,隨著技術(shù)的發(fā)展,
    的頭像 發(fā)表于 07-04 09:28 ?502次閱讀

    人臉識別技術(shù)的優(yōu)缺點有哪些

    人臉識別技術(shù)是一種基于人臉特征信息進(jìn)行身份識別的生物識別技術(shù)。隨著計算機視覺、深度學(xué)習(xí)等技術(shù)的發(fā)展,人臉
    的頭像 發(fā)表于 07-04 09:25 ?2211次閱讀

    人臉識別技術(shù)的原理介紹

    人臉識別技術(shù)是一種基于人臉特征信息進(jìn)行身份識別的生物識別技術(shù)。它通過分析人臉圖像,提取
    的頭像 發(fā)表于 07-04 09:22 ?1153次閱讀

    如何設(shè)計人臉識別的神經(jīng)網(wǎng)絡(luò)

    人臉識別技術(shù)是一種基于人臉特征信息進(jìn)行身份識別的技術(shù),廣泛應(yīng)用于安全監(jiān)控、身份認(rèn)證、智能門禁等領(lǐng)域。神經(jīng)網(wǎng)絡(luò)是實現(xiàn)人臉
    的頭像 發(fā)表于 07-04 09:20 ?647次閱讀

    人臉識別模型訓(xùn)練流程

    人臉識別模型訓(xùn)練流程是計算機視覺領(lǐng)域中的一項重要技術(shù)。本文將詳細(xì)介紹人臉識別模型的訓(xùn)練流程,包括數(shù)據(jù)準(zhǔn)備、模型選擇、模型訓(xùn)練、模型評估和應(yīng)用部署等環(huán)節(jié)。 數(shù)據(jù)準(zhǔn)備 數(shù)據(jù)是訓(xùn)練
    的頭像 發(fā)表于 07-04 09:19 ?945次閱讀

    人臉識別模型訓(xùn)練是什么意思

    人臉識別模型訓(xùn)練是指通過大量的人臉數(shù)據(jù),使用機器學(xué)習(xí)或深度學(xué)習(xí)算法,訓(xùn)練出一個能夠識別和分類人臉的模型。這個模型可以應(yīng)用于各種場景,如安防監(jiān)
    的頭像 發(fā)表于 07-04 09:16 ?585次閱讀

    人臉檢測和人臉識別的區(qū)別是什么

    人臉檢測和人臉識別是計算機視覺領(lǐng)域的兩個重要技術(shù),它們在許多應(yīng)用場景中都有廣泛的應(yīng)用,如安全監(jiān)控、身份驗證、社交媒體等。盡管它們在某些方面有相似之處,但它們之間存在一些關(guān)鍵的區(qū)別。本文將詳細(xì)介紹
    的頭像 發(fā)表于 07-03 14:49 ?1190次閱讀

    人臉檢測與識別的方法有哪些

    越來越重要的角色。隨著計算機技術(shù)的發(fā)展,人臉檢測與識別技術(shù)在不斷地進(jìn)步和完善。本文將從人臉檢測與識別的基本概念出發(fā),詳細(xì)介紹各種方法和技術(shù)
    的頭像 發(fā)表于 07-03 14:45 ?709次閱讀

    人臉識別門禁系統(tǒng)賦社區(qū)安防

    一、提升安全性人臉識別門禁系統(tǒng)通過使用生物識別技術(shù),即基于人臉特征的身份識別系統(tǒng),能夠顯著提升社區(qū)的安全性。這種系統(tǒng)利用
    的頭像 發(fā)表于 07-02 11:09 ?471次閱讀
    <b class='flag-5'>人臉</b><b class='flag-5'>識別</b>門禁系統(tǒng)賦<b class='flag-5'>能</b>社區(qū)安防

    人臉識別門禁方案:輕松實現(xiàn)刷開門、閘機及考勤管理

    和密碼等方式,實現(xiàn)無接觸、高效率的出入控制。刷開門的實現(xiàn)▲人臉捕獲與跟蹤人臉識別門禁系統(tǒng)首先需要對進(jìn)入者的面部進(jìn)行捕獲,并自動地將其保存。這一步驟涉及到
    的頭像 發(fā)表于 06-25 15:57 ?1474次閱讀
    <b class='flag-5'>人臉</b><b class='flag-5'>識別</b>門禁方案:輕松實現(xiàn)刷<b class='flag-5'>臉</b>開門、閘機及考勤管理

    人臉識別終端 10寸人臉

    終端人臉識別
    深圳市遠(yuǎn)景達(dá)物聯(lián)網(wǎng)技術(shù)有限公司
    發(fā)布于 :2024年04月22日 16:01:46

    小區(qū)無感人臉識別門禁攝像機,多人同時識別通過 #人臉識別 #智能攝像機

    AI人臉識別
    jf_07511428
    發(fā)布于 :2024年03月06日 22:53:18

    公司人臉識別考勤門禁攝像機#人臉識別#智能攝像機

    AI人臉識別
    jf_07511428
    發(fā)布于 :2024年03月06日 22:52:08

    哪些場景要使用到人臉識別門禁考勤一體機

    伴隨著刷識別設(shè)備的不斷升溫,越來越多的人把刷進(jìn)出當(dāng)成了習(xí)慣。正因為它不僅方便智能,僅需刷就能夠完成門禁考勤,因此在很多項目場景中或多個領(lǐng)域中,
    的頭像 發(fā)表于 03-05 13:59 ?549次閱讀
    哪些場景要使用到<b class='flag-5'>人臉</b><b class='flag-5'>識別</b>門禁考勤一體機

    人臉識別技術(shù)的原理是什么 人臉識別技術(shù)的特點有哪些

    人臉識別技術(shù)的原理 人臉識別技術(shù)是一種通過計算機以圖像或視頻為輸入,識別、檢測、跟蹤和分析人臉
    的頭像 發(fā)表于 02-18 13:52 ?1879次閱讀
    主站蜘蛛池模板: 99国产精品偷窥熟女精品视频| 午夜免费小视频| 欧美精品高清在线观看| 亚洲精品资源网在线观看| 嘟嘟嘟WWW在线观看视频高清| 老师的快感电影完整版| 亚洲欧美在无码片一区二区| 国产成人在线视频免费观看| 人人模人人干| 啊灬啊灬啊灬快灬深高潮啦| 芒果视频看片在线观看| 中俄两军在日本海等上空战略巡航| 国产亚洲日韩在线播放不卡| 午夜神器18以下不能进免费| 国产国产人免费观看在线视频| 色99久久久久高潮综合影院| 嘟嘟嘟在线视频免费观看高清中文| 青青草伊人网| 钉钉女老师| 兔费看少妇性L交大片免费| 国产成人刺激视频在线观看| 忘忧草秋观看未满十八| 国产精品久久久久久亚洲影视| 特黄特黄aaaa级毛片免费看| 国产国产成年在线视频区| 婷婷六月激情综合一区| 国精产品一区一区三区有限公司| 亚洲精品在线观看视频| 久久99视热频国只有精品| 在线涩涩免费观看国产精品| 老师你奶真大下面水真多| 最近在线视频观看2018免费| 免费在线观看国产| 成年无码av片| 无码毛片内射白浆视频| 国产在线一区二区AV视频| 亚洲视频在线免费| 美女大鸡鸡| 大香交伊人| 亚洲国产欧美另类| 美女久久久|