色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

周志華等人新書:《演化學習:理論和算法的進展》正式上線!

DPVg_AI_era ? 來源:lp ? 2019-04-19 10:16 ? 次閱讀

近日,由周志華教授、俞揚教授和錢超研究員共同完成的新書——《EvolutionaryLearning:AdvancesinTheoriesandAlgorithms》正式上線!堪稱“寶藏級”新書,速來收藏。

愛逛知乎的小編在2019年4月13日,發現一直關注的俞揚教授發了一篇推文"致青春",點進去一看,發現了”寶藏“!

于是便立即聯系了俞揚教授,詢問是否可以將這份資源轉發或者介紹給大家。俞教授也很爽快,沒過多久就給了肯定的答復。

《EvolutionaryLearning:AdvancesinTheoriesandAlgorithms》為原書名,因為微信公眾號標題長度有限制,所以自行翻譯成了中文:《演化學習:理論和算法的進展》。其中EvolutionaryLearning網上很多翻譯成:進化學習。但我閱讀了俞揚教授的原文,里面說是演化學習,所以這里為了統一,我還是標明演化學習。

中文僅供參考,若翻譯有問題,還請指正,大家還是以英文為主。

本書是由周志華教授、俞揚教授和錢超研究員三位共同完成,這里簡單介紹一下三位:

周志華,現任南京大學計算機科學與技術系主任、南京大學計算機軟件新技術國家重點實驗室常務副主任、機器學習與數據挖掘研究所(LAMDA)所長,校學術委員會委員。美國計算機學會(ACM)、美國科學促進會(AAAS)、國際人工智能學會(AAAI)、國際電氣電子工程師學會(IEEE)、國際模式識別學會(IAPR)、國際工程技術學會(IET/IEE)、中國計算機學會(CCF)、中國人工智能學會(CAAI)等學會的會士(Fellow),歐洲科學院外籍院士。南京市政府人工智能產業顧問、證監會科技監管專家咨詢委員會委員、江蘇省政協委員、江蘇省青聯副主席等。

主要從事人工智能、機器學習、數據挖掘等領域的研究工作。主持多項科研課題,出版《機器學習》(2016)與《EnsembleMethods:FoundationsandAlgorithms》(2012),在一流國際期刊和頂級國際會議發表論文百余篇,被引用三萬余次。經常擔任NIPS、ICML、AAAI、IJCAI、KDD等重要國際學術會議的領域主席。擔任中國計算機學會常務理事、人工智能專業委員會主任,中國人工智能學會常務理事,江蘇省計算機學會副理事長,江蘇省人工智能學會理事長,IEEE南京分部副主席。

周志華教授個人信息節選自:

http://cs.nju.edu.cn/zhouzh/zhouzh.files/resume_cn.htm

俞揚,博士,南京大學副教授,博士生導師。主要研究領域為人工智能、機器學習、強化學習。2011年8月加入南京大學計算機科學與技術系、機器學習與數據挖掘研究所(LAMDA)從事教學與科研工作。

曾獲2013年全國優秀博士學位論文獎、2011年中國計算機學會優秀博士學位論文獎。發表論文40余篇,包括多篇ArtificialIntelligence、IJCAI、AAAI、NIPS、KDD等人工智能、機器學習和數據挖掘國際頂級期刊和頂級會議論文。入選2018年IEEEIntelligentSystems雜志評選的AI's10toWatch,獲2018PAKDDEarlyCareerAward、2017年江蘇省計算機學會青年科技獎。共同發起并主辦了亞洲強化學習系列研討會(AWRL)、中國演化計算與學習系列研討會(ECOLE),任人工智能領域國際頂級會議IJCAI'18領域主席、ICPR'18領域主席、ACML'17領域主席,任IEEE計算智能協會數據挖掘與大數據分析技術委員會委員、中國人工智能學會機器學習專委會委員、中國計算機學會人工智能與模式識別專委會委員,ArtificialIntelligence、IJCAI、AAAI、KDD、ICML、NIPS、CVPR、ICCV等多個一流期刊的評審人和會議的程序委員。

俞揚教授個人信息節選自:

http://lamda.nju.edu.cn/yuy/cv_ch.ashx

錢超是中國科學技術大學副研究員。他的研究興趣是人工智能,演化計算和機器學習。他在領先的國際期刊和會議論文集上發表了20多篇論文,包括人工智能,演化計算,IEEE演化計算交易,Algorithmica,NIPS,IJCAI,AAAI等。他贏得了ACMGECCO2011年度最佳論文獎(TheoryTrack)和IDEAL2016年度最佳論文獎。他還曾擔任IEEE計算智能學會(CIS)工作組“TheoreticalFoundationsofBio-inspiredComputation”的主席。

錢超研究員個人信息節選自:

http://staff.ustc.edu.cn/~chaoqian/

https://www.springer.com/cn/book/9789811359552#aboutAuthors

下面看看俞揚教授簡單介紹該書的知乎原文"致青春"

https://zhuanlan.zhihu.com/p/62178187

正文(致青春)

最近與周老師、錢超一起完成了一本書。書的名字叫

《EvolutionaryLearning:AdvancesinTheoriesandAlgorithms》,但是對于我來說,可以叫“致青春”。從2005年碩士入學開始,抱著演化算法理論這個硬骨頭開始啃。

我的數學基礎并不好,在我同一屆進入LAMDA的同學中,毫無疑問是墊底,但也許優點是膽子大,周老師說這個方向重要,那就干。這個領域真是四處不討好,讓我深刻體驗了什么叫冷板凳。即使是在演化計算領域里,對于搞應用的來說,理論太滯后,沒有指導意義,甚至關注理論進展的人都很少。而放在整個人工智能領域里,更是艱難,當時演化計算就已經是在頂級會議上冷下去的話題了。

2000年前,IJCAI還出現了演化計算的session,2000年左右,隨著上一波演化神經網絡結構優化的興起演化算法也還在火(是的,NAS并不是這幾年發明的,20年前的東西了),之后也隨著神經網絡的冷淡,大家放棄啟發擁抱理論更清楚的方法,演化計算也迅速在頂級會議上隱匿。所以演化計算的論文要發在頂級會議上極其困難,而理論更甚,不僅要回答技術問題,還要回答諸如這個方向還有研究價值嗎、這個理論怎么指導算法,之類的問題。

回想起來在AAAI2006發表的第一篇做演化算法復雜度分析的論文,真是走運,其中一個審稿人一個字審稿意見都沒寫,直接打了滿分。

看到最終成稿,收錄了我們十幾年努力的結果,感覺這么多年也沒白做,現在從理論、算法、到應用效果都能打通,AAAI、IJCAI、NIPS也都有發表了,尤其是NIPS2017的工作,回答了一個長久以來演化計算領域面臨的核心挑戰:“有什么問題能證明是以往算法做不到而演化算法能做到的”。

致我的青春年華。以后只能是個拼搏的中年人了。。。

書籍鏈接:

https://www.springer.com/cn/book/9789811359552

《EvolutionaryLearning:AdvancesinTheoriesandAlgorithms》簡介

許多機器學習任務涉及解決復雜的優化問題,例如處理不可微分,非連續和非唯一的目標函數;在某些情況下,甚至難以定義明確的目標函數。演化學習(Evolutionarylearning)應用演化算法來解決機器學習中的優化問題,并在許多應用中產生了令人滿意的結果。然而,由于演化優化的啟發性特征,迄今為止的大多數結果都是經驗性的,缺乏理論支持。這個缺點使得進化學習不再受到機器學習社區的歡迎。

最近,為解決這個問題付出了相當大的努力。本書將分成系列來介紹這些努力,共分為四個部分:

第一部分:簡要向讀者介紹演化學習并提供了一些預備知識;

第二部分:介紹演化算法中運行時間和近似性能分析的一般理論工具;

第三部分:提出許多關于演化優化中主要因素的理論發現,例如recombination,representation,inaccuratefitnessevaluation,andpopulation;

第四部分:討論了演化學習算法的發展,為幾個代表性任務提供了可證明的理論保證。

致謝

在此感謝周志華教授、俞揚教授和錢超研究員整理這么棒的書籍!

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 人工智能
    +關注

    關注

    1792

    文章

    47442

    瀏覽量

    239004
  • 數據挖掘
    +關注

    關注

    1

    文章

    406

    瀏覽量

    24266
  • 機器學習
    +關注

    關注

    66

    文章

    8425

    瀏覽量

    132774

原文標題:周志華等人新書:《演化學習:理論和算法的進展》正式上線!

文章出處:【微信號:AI_era,微信公眾號:新智元】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    NPU與機器學習算法的關系

    在人工智能領域,機器學習算法是實現智能系統的核心。隨著數據量的激增和算法復雜度的提升,對計算資源的需求也在不斷增長。NPU作為一種專門為深度學習等機器
    的頭像 發表于 11-15 09:19 ?519次閱讀

    如何使用 PyTorch 進行強化學習

    的計算圖和自動微分功能,非常適合實現復雜的強化學習算法。 1. 環境(Environment) 在強化學習中,環境是一個抽象的概念,它定義了智能體(agent)可以執行的動作(actions)、觀察到
    的頭像 發表于 11-05 17:34 ?330次閱讀

    庫克訪華透露Apple Intelligence國內上線進展

    10月23日,蘋果CEO庫克到訪新浪總部,期間有現場觀眾詢問關于Apple Intelligence服務在國內何時上線的問題。庫克對此回應稱,蘋果正在積極推進相關工作,但這一服務上線背后涉及一個具體的監管流程,需要完成所有必要步驟,并希望能盡快為中國消費者帶來這一服務。
    的頭像 發表于 10-23 11:47 ?463次閱讀

    《AI for Science:人工智能驅動科學創新》第一章人工智能驅動的科學創新學習心得

    學科之間的交叉融合,形成了一種全新的科學研究范式。AI技術打破了學科壁壘,使得物理學、化學、生物學、天文學等領域的研究者能夠共享數據和算法,共同解決復雜問題。這種跨學科的合作不僅拓寬了科學研究的視野
    發表于 10-14 09:12

    圖像識別算法都有哪些方法

    圖像識別算法是計算機視覺領域的核心任務之一,它涉及到從圖像中提取特征并進行分類、識別和分析的過程。隨著深度學習技術的不斷發展,圖像識別算法已經取得了顯著的進展。本文將介紹圖像識別
    的頭像 發表于 07-16 11:14 ?5716次閱讀

    深度學習算法在嵌入式平臺上的部署

    隨著人工智能技術的飛速發展,深度學習算法在各個領域的應用日益廣泛。然而,將深度學習算法部署到資源受限的嵌入式平臺上,仍然是一個具有挑戰性的任務。本文將從嵌入式平臺的特點、深度
    的頭像 發表于 07-15 10:03 ?1524次閱讀

    利用Matlab函數實現深度學習算法

    在Matlab中實現深度學習算法是一個復雜但強大的過程,可以應用于各種領域,如圖像識別、自然語言處理、時間序列預測等。這里,我將概述一個基本的流程,包括環境設置、數據準備、模型設計、訓練過程、以及測試和評估,并提供一個基于Matlab的深度
    的頭像 發表于 07-14 14:21 ?2324次閱讀

    神經網絡優化算法有哪些

    神經網絡優化算法是深度學習領域中的核心技術之一,旨在通過調整網絡中的參數(如權重和偏差)來最小化損失函數,從而提高模型的性能和效率。本文將詳細探討神經網絡優化算法的基本原理、主要方法、變體、以及在實際應用中的注意事項和最新
    的頭像 發表于 07-03 16:01 ?586次閱讀

    機器學習算法原理詳解

    機器學習作為人工智能的一個重要分支,其目標是通過讓計算機自動從數據中學習并改進其性能,而無需進行明確的編程。本文將深入解讀幾種常見的機器學習算法原理,包括線性回歸、邏輯回歸、支持向量機
    的頭像 發表于 07-02 11:25 ?1140次閱讀

    機器學習的經典算法與應用

    關于數據機器學習就是喂入算法和數據,讓算法從數據中尋找一種相應的關系。Iris鳶尾花數據集是一個經典數據集,在統計學習和機器學習領域都經常被
    的頭像 發表于 06-27 08:27 ?1680次閱讀
    機器<b class='flag-5'>學習</b>的經典<b class='flag-5'>算法</b>與應用

    通過強化學習策略進行特征選擇

    更快更好地學習。我們的想法是找到最優數量的特征和最有意義的特征。在本文中,我們將介紹并實現一種新的通過強化學習策略的特征選擇。我們先討論強化學習,尤其是馬爾可夫決策
    的頭像 發表于 06-05 08:27 ?375次閱讀
    通過強<b class='flag-5'>化學習</b>策略進行特征選擇

    深度解析深度學習下的語義SLAM

    隨著深度學習技術的興起,計算機視覺的許多傳統領域都取得了突破性進展,例如目標的檢測、識別和分類等領域。近年來,研究人員開始在視覺SLAM算法中引入深度學習技術,使得深度
    發表于 04-23 17:18 ?1324次閱讀
    深度解析深度<b class='flag-5'>學習</b>下的語義SLAM

    機器學習六大核心算法深度解析

    算法歷程:線性回歸是一種古老的統計方法,它試圖找到最佳擬合數據的直線或超平面,最早可以追溯到19世紀初的高斯最小二乘法理論
    發表于 04-23 16:25 ?1875次閱讀
    機器<b class='flag-5'>學習</b>六大核心<b class='flag-5'>算法</b>深度解析

    名單公布!【書籍評測活動NO.30】大規模語言模型:從理論到實踐

    和強化學習展開,詳細介紹各階段使用的算法、數據、難點及實踐經驗。 預訓練階段需要利用包含數千億甚至數萬億單詞的訓練數據,并借助由數千塊高性能GPU 和高速網絡組成的超級計算機,花費數十天完成深度神經網絡
    發表于 03-11 15:16

    AI算法的本質是模擬人類智能,讓機器實現智能化

    電子發燒友網報道(文/李彎彎)AI算法是人工智能領域中使用的算法,用于模擬、延伸和擴展人的智能。這些算法可以通過機器學習、深度學習、強
    的頭像 發表于 02-07 00:07 ?5863次閱讀
    主站蜘蛛池模板: 伊人久久久久久久久久| 微福利92合集| 黄色三级三级三级免费看| 北原夏美 快播| 99精品国产高清自在线看超| 一天不停的插BB十几次| 亚洲免费视频在线观看| 校园女教师之禁区| 天天久久狠狠色综合| 四房色播手机版| 特级毛片s级全部免费| 熟妇无码乱子成人精品| 少妇邻居内射在线| 天天日免费观看视频一1| 翁止熄痒禁伦短文合集免费视频| 少妇连续高潮抽搐痉挛昏厥| 手机移动oa| 羞羞在线观看| 亚洲欧美国产综合在线| 亚洲午夜久久久久中文字幕| 亚洲在线国产日韩欧美| 伊人网站在线| 87影院午夜福利| 99久久久国产精品免费调教| ewp绞死vk失禁编| 成人国产精品免费网站| 国产成人精视频在线观看免费| 国产短视频精品区| 韩国无遮羞禁动漫在线观看| 久久a级片| 免费观看桶机十分钟| 啪啪激情婷婷久久婷婷色五月| 日韩一本在线| 亚洲国产精品自在自线观看| 一级特黄视频| 99久久国产综合精品国| 动漫美女被到爽了流| 国产免费阿v精品视频网址| 狠狠色丁香婷婷久久综合五月 | 欧美又粗又大AAAA片| 色久悠悠无码偷拍自怕|