色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

如何用Python實現(xiàn)一個大數據搜索引擎

馬哥Linux運維 ? 來源:cc ? 2019-01-25 14:26 ? 次閱讀

搜索是大數據領域里常見的需求。Splunk和ELK分別是該領域在非開源和開源領域里的領導者。本文利用很少的Python代碼實現(xiàn)了一個基本的數據搜索功能,試圖讓大家理解大數據搜索的基本原理。

布隆過濾器 (Bloom Filter)

第一步我們先要實現(xiàn)一個布隆過濾器。

布隆過濾器是大數據領域的一個常見算法,它的目的是過濾掉那些不是目標的元素。也就是說如果一個要搜索的詞并不存在與我的數據中,那么它可以以很快的速度返回目標不存在。

讓我們看看以下布隆過濾器的代碼:

classBloomfilter(object):

"""

A Bloom filter is a probabilistic data-structure that trades space for accuracy

when determining if a value is in a set.It can tell you if a value was possibly

added, or if it was definitely not added, but it can't tell you for certain that

it was added.

"""

def __init__(self,size):

"""Setup the BF with the appropriate size"""

self.values = [False] * size

self.size = size

def hash_value(self,value):

"""Hash the value provided and scale it to fit the BF size"""

returnhash(value) % self.size

def add_value(self,value):

"""Add a value to the BF"""

h = self.hash_value(value)

self.values[h] = True

def might_contain(self,value):

"""Check if the value might be in the BF"""

h = self.hash_value(value)

returnself.values[h]

def print_contents(self):

"""Dump the contents of the BF for debugging purposes"""

print self.values

基本的數據結構是個數組(實際上是個位圖,用1/0來記錄數據是否存在),初始化是沒有任何內容,所以全部置False。實際的使用當中,該數組的長度是非常大的,以保證效率。

利用哈希算法來決定數據應該存在哪一位,也就是數組的索引

當一個數據被加入到布隆過濾器的時候,計算它的哈希值然后把相應的位置為True

當檢查一個數據是否已經存在或者說被索引過的時候,只要檢查對應的哈希值所在的位的True/Fasle

看到這里,大家應該可以看出,如果布隆過濾器返回False,那么數據一定是沒有索引過的,然而如果返回True,那也不能說數據一定就已經被索引過。在搜索過程中使用布隆過濾器可以使得很多沒有命中的搜索提前返回來提高效率。

我們看看這段 code是如何運行的:

bf = Bloomfilter(10)

bf.add_value('dog')

bf.add_value('fish')

bf.add_value('cat')

bf.print_contents()

bf.add_value('bird')

bf.print_contents()

# Note: contents are unchanged after adding bird - it collides

forterm in['dog','fish','cat','bird','duck','emu']:

print'{}: {} {}'.format(term,bf.hash_value(term),bf.might_contain(term))

結果:

[False,False,False,False,True,True,False,False,False,True]

[False,False,False,False,True,True,False,False,False,True]

dog: 5True

fish: 4True

cat: 9True

bird: 9True

duck: 5True

emu: 8False

首先創(chuàng)建了一個容量為10的的布隆過濾器

然后分別加入 ‘dog’,‘fish’,‘cat’三個對象,這時的布隆過濾器的內容如下:

然后加入‘bird’對象,布隆過濾器的內容并沒有改變,因為‘bird’和‘fish’恰好擁有相同的哈希。

最后我們檢查一堆對象(’dog’, ‘fish’, ‘cat’, ‘bird’, ‘duck’, ’emu’)是不是已經被索引了。結果發(fā)現(xiàn)‘duck’返回True,2而‘emu’返回False。因為‘duck’的哈希恰好和‘dog’是一樣的。

分詞

下面一步我們要實現(xiàn)分詞。 分詞的目的是要把我們的文本數據分割成可搜索的最小單元,也就是詞。這里我們主要針對英語,因為中文的分詞涉及到自然語言處理,比較復雜,而英文基本只要用標點符號就好了。

下面我們看看分詞的代碼:

def major_segments(s):

"""

Perform major segmenting on a string.Split the string by all of the major

breaks, and return the set of everything found.The breaks in this implementation

are single characters, but in Splunk proper they can be multiple characters.

A set is used because ordering doesn't matter, and duplicates are bad.

"""

major_breaks = ' '

last = -1

results = set()

# enumerate() will give us (0, s[0]), (1, s[1]), ...

foridx,ch inenumerate(s):

ifch inmajor_breaks:

segment = s[last+1:idx]

results.add(segment)

last = idx

# The last character may not be a break so always capture

# the last segment (which may end up being "", but yolo)

segment = s[last+1:]

results.add(segment)

returnresults

主要分割

主要分割使用空格來分詞,實際的分詞邏輯中,還會有其它的分隔符。例如Splunk的缺省分割符包括以下這些,用戶也可以定義自己的分割符。

] < >( ) { } | ! ; , ‘ ” * s & ? + %21 %26 %2526 %3B %7C %20 %2B %3D — %2520 %5D %5B %3A %0A %2C %28 %29

def minor_segments(s):

"""

Perform minor segmenting on a string.This is like major

segmenting, except it also captures from the start of the

input to each break.

"""

minor_breaks = '_.'

last = -1

results = set()

foridx,ch inenumerate(s):

ifch inminor_breaks:

segment = s[last+1:idx]

results.add(segment)

segment = s[:idx]

results.add(segment)

last = idx

segment = s[last+1:]

results.add(segment)

results.add(s)

returnresults

次要分割

次要分割和主要分割的邏輯類似,只是還會把從開始部分到當前分割的結果加入。例如“1.2.3.4”的次要分割會有1,2,3,4,1.2,1.2.3

def segments(event):

"""Simple wrapper around major_segments / minor_segments"""

results = set()

formajor inmajor_segments(event):

forminor inminor_segments(major):

results.add(minor)

returnresults

分詞的邏輯就是對文本先進行主要分割,對每一個主要分割在進行次要分割。然后把所有分出來的詞返回。

我們看看這段 code是如何運行的:

forterm insegments('src_ip = 1.2.3.4'):

print term

src

1.2

1.2.3.4

src_ip

3

1

1.2.3

ip

2

=

4

搜索

好了,有個分詞和布隆過濾器這兩個利器的支撐后,我們就可以來實現(xiàn)搜索的功能了。

上代碼:

classSplunk(object):

def __init__(self):

self.bf = Bloomfilter(64)

self.terms = {}# Dictionary of term to set of events

self.events = []

def add_event(self,event):

"""Adds an event to this object"""

# Generate a unique ID for the event, and save it

event_id = len(self.events)

self.events.append(event)

# Add each term to the bloomfilter, and track the event by each term

forterm insegments(event):

self.bf.add_value(term)

ifterm notinself.terms:

self.terms[term] = set()

self.terms[term].add(event_id)

def search(self,term):

"""Search for a single term, and yield all the events that contain it"""

# In Splunk this runs in O(1), and is likely to be in filesystem cache (memory)

ifnotself.bf.might_contain(term):

return

# In Splunk this probably runs in O(log N) where N is the number of terms in the tsidx

ifterm notinself.terms:

return

forevent_id insorted(self.terms[term]):

yield self.events[event_id]

Splunk代表一個擁有搜索功能的索引集合

每一個集合中包含一個布隆過濾器,一個倒排詞表(字典),和一個存儲所有事件的數組

當一個事件被加入到索引的時候,會做以下的邏輯

為每一個事件生成一個unqie id,這里就是序號

對事件進行分詞,把每一個詞加入到倒排詞表,也就是每一個詞對應的事件的id的映射結構,注意,一個詞可能對應多個事件,所以倒排表的的值是一個Set。倒排表是絕大部分搜索引擎的核心功能。

當一個詞被搜索的時候,會做以下的邏輯

檢查布隆過濾器,如果為假,直接返回

檢查詞表,如果被搜索單詞不在詞表中,直接返回

在倒排表中找到所有對應的事件id,然后返回事件的內容

我們運行下看看把:

s = Splunk()

s.add_event('src_ip = 1.2.3.4')

s.add_event('src_ip = 5.6.7.8')

s.add_event('dst_ip = 1.2.3.4')

forevent ins.search('1.2.3.4'):

print event

print'-'

forevent ins.search('src_ip'):

print event

print'-'

forevent ins.search('ip'):

print event

src_ip = 1.2.3.4

dst_ip = 1.2.3.4

-

src_ip = 1.2.3.4

src_ip = 5.6.7.8

-

src_ip = 1.2.3.4

src_ip = 5.6.7.8

dst_ip = 1.2.3.4

是不是很贊!

更復雜的搜索

更進一步,在搜索過程中,我們想用And和Or來實現(xiàn)更復雜的搜索邏輯。

上代碼:

classSplunkM(object):

def __init__(self):

self.bf = Bloomfilter(64)

self.terms = {}# Dictionary of term to set of events

self.events = []

def add_event(self,event):

"""Adds an event to this object"""

# Generate a unique ID for the event, and save it

event_id = len(self.events)

self.events.append(event)

# Add each term to the bloomfilter, and track the event by each term

forterm insegments(event):

self.bf.add_value(term)

ifterm notinself.terms:

self.terms[term] = set()

self.terms[term].add(event_id)

def search_all(self,terms):

"""Search for an AND of all terms"""

# Start with the universe of all events...

results = set(range(len(self.events)))

forterm interms:

# If a term isn't present at all then we can stop looking

ifnotself.bf.might_contain(term):

return

ifterm notinself.terms:

return

# Drop events that don't match from our results

results = results.intersection(self.terms[term])

forevent_id insorted(results):

yield self.events[event_id]

def search_any(self,terms):

"""Search for an OR of all terms"""

results = set()

forterm interms:

# If a term isn't present, we skip it, but don't stop

ifnotself.bf.might_contain(term):

continue

ifterm notinself.terms:

continue

# Add these events to our results

results = results.union(self.terms[term])

forevent_id insorted(results):

yield self.events[event_id]

利用Python集合的intersection和union操作,可以很方便的支持And(求交集)和Or(求合集)的操作。

運行結果如下:

s = SplunkM()

s.add_event('src_ip = 1.2.3.4')

s.add_event('src_ip = 5.6.7.8')

s.add_event('dst_ip = 1.2.3.4')

forevent ins.search_all(['src_ip','5.6']):

print event

print'-'

forevent ins.search_any(['src_ip','dst_ip']):

print event

src_ip = 5.6.7.8

-

src_ip = 1.2.3.4

src_ip = 5.6.7.8

dst_ip = 1.2.3.4

總結

以上的代碼只是為了說明大數據搜索的基本原理,包括布隆過濾器,分詞和倒排表。如果大家真的想要利用這代碼來實現(xiàn)真正的搜索功能,還差的太遠。所有的內容來自于Splunk Conf2017。大家如果有興趣可以去看網上的視頻

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 搜索引擎
    +關注

    關注

    0

    文章

    119

    瀏覽量

    13364
  • python
    +關注

    關注

    56

    文章

    4799

    瀏覽量

    84810
  • 大數據
    +關注

    關注

    64

    文章

    8896

    瀏覽量

    137518

原文標題:用 Python 實現(xiàn)一個大數據搜索引擎

文章出處:【微信號:magedu-Linux,微信公眾號:馬哥Linux運維】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    參加搜索引擎營銷SEM培訓的好處?

    參加搜索引擎營銷SEM培訓進入搜索引擎行業(yè),跟隨各大搜索引擎起成長;4. 可以通過校友會認識大量業(yè)界專家和從業(yè)者,為日后的職業(yè)發(fā)展廣聚人脈資源;北京鼎泰恒業(yè)網絡營銷培訓學校010-5
    發(fā)表于 04-11 14:21

    基于網格技術的并行搜索引擎

    研究現(xiàn)有網格技術和搜索技術,分析并行搜索引擎的優(yōu)點和不足,提出基于網格技術的并行搜索引擎解決方案,其中包含3 層結構的應用框架和
    發(fā)表于 03-30 10:09 ?23次下載

    搜索引擎查詢日志的聚類

    隨著搜索引擎技術和網絡數據挖掘技術的發(fā)展,怎樣從搜索引擎查詢日志中找到有用的信息成為研究熱點。該文在討論Beeferman提出的算法及Chan對其改進的算法的優(yōu)缺點后,提出
    發(fā)表于 04-02 08:49 ?27次下載

    教育網BBS搜索引擎設計與實現(xiàn)

    BBS 是教育網的大特色,也是傳統(tǒng)搜索引擎搜索的盲點,本文系統(tǒng)介紹了根據教育網BBS 的特點建立BBS 搜索引擎的關鍵技術和實現(xiàn)方法。關鍵
    發(fā)表于 06-17 11:28 ?14次下載

    主題搜索引擎的研究

    介紹了將開源的全文檢索工具包Lucene嵌入到自己的搜索引擎中來滿足開發(fā)主題搜索引擎的需求。并基于Lucene中文分詞的不足設計了比較完善的中文分詞器,然后將其引入具體應
    發(fā)表于 07-05 16:30 ?11次下載

    網絡搜索引擎,網絡搜索引擎的工作原理

    網絡搜索引擎,網絡搜索引擎的工作原理 21 世紀是信息時代,隨著信息科學技術的不斷發(fā)展,網絡已成為人們生活中的重要組成部分,網上
    發(fā)表于 03-26 15:51 ?1460次閱讀

    基于JAVA技術的搜索引擎的研究與實現(xiàn)

    本文還利用Java技術對搜索引擎的三核心部分即網絡蜘蛛、網頁索引搜索進行了實現(xiàn)索引
    發(fā)表于 05-07 14:14 ?35次下載
    基于JAVA技術的<b class='flag-5'>搜索引擎</b>的研究與<b class='flag-5'>實現(xiàn)</b>

    個大規(guī)模超文本網絡搜索引擎剖析(英文版)

    個大規(guī)模超文本網絡搜索引擎剖析(英文版)
    發(fā)表于 04-30 14:09 ?0次下載

    垂直搜索引擎是什么_垂直搜索引擎有哪些

    垂直搜索引擎是針對某一個行業(yè)的專業(yè)搜索引擎,是搜索引擎的細分和延伸,是對網頁庫中的某類專門的信息進行次整合,定向分字段抽取出需要的
    發(fā)表于 01-04 17:19 ?7939次閱讀

    Python 實現(xiàn)個大數據搜索引擎

    搜索大數據領域里常見的需求。Splunk和ELK分別是該領域在非開源和開源領域里的領導者。本文利用很少的Python代碼實現(xiàn)
    的頭像 發(fā)表于 03-06 17:26 ?4762次閱讀

    介紹五具有高級功能的搜索引擎

    數據庫里存儲的大量的信息對標準的搜索引擎來說是不可見的,標準的搜索引擎只是索引網站上的內容,從
    的頭像 發(fā)表于 04-04 09:13 ?7133次閱讀

    python爬蟲入門教程之python爬蟲視頻教程分布式爬蟲打造搜索引擎

    本文檔的主要內容詳細介紹的是python爬蟲入門教程之python爬蟲視頻教程分布式爬蟲打造搜索引擎
    發(fā)表于 08-28 15:32 ?29次下載

    搜索引擎到人工智能看大數據應用發(fā)展史

    我們對大數據技術的使用也經歷了發(fā)展過程。從最開始的 Google 在搜索引擎中開始使用大數據技術,到現(xiàn)在無處不在的各種人工智能應用,伴隨
    的頭像 發(fā)表于 01-08 16:33 ?3265次閱讀

    大數據是如何優(yōu)化企業(yè)搜索引擎

    企業(yè)網站將比以往任何時候都更多地使用大數據大數據搜索引擎優(yōu)化(SEO)中起著非常重要的作用。
    發(fā)表于 12-28 10:24 ?2256次閱讀

    NAS下搭建linux命令搜索引擎教程

    前面寫到了程序專用的vscode,今天再來介紹款程序佬專用的搜索引擎——Linux命令搜索引擎。該引擎專用于搜索Linux下的各種命令,畢
    的頭像 發(fā)表于 02-24 11:33 ?1128次閱讀
    NAS下搭建linux命令<b class='flag-5'>搜索引擎</b>教程
    主站蜘蛛池模板: 欧美伦理片第7页| 日韩在线av免费视久久| 午夜福到在线2019| 美女诱点第6季| 99手机在线视频| 日本午夜看x费免| 国产伦精品一区二区三区免费| 亚洲精品无码葡京AV天堂| 久久黄色免费| 喜马拉雅听书免费版| 精品成人在线视频| jjzzz日本| 男女后进式猛烈xx00动态图片 | 真实国产乱子伦精品一区二区三区| 国产精品久久久久婷婷五月色婷婷 | 女人高潮久久久叫人喷水| 国产99久久久欧美黑人刘玥| 亚洲午夜精品AV无码少妇| 欧美牲交A欧美牲交| 国产一区精选播放022| 99精品国产第一福利网站| 香蕉人人超人人超碰超国产| 蜜臀久久99精品久久久久久做爰| 国产精品成人无码免费视频| 在线观看免费国产成人软件| 久久4k岛国高清一区二区| aaaaaaa一级毛片| 亚洲在线无码免费观看| 三级黄色视屏| 美女张开腿让男人桶爽无弹窗| 国产人妻人伦精品熟女麻豆 | 香蕉尹人综合精品| 免费三级播放器| 狠狠色狠狠色综合日日32| 成人a视频在线观看| 夜夜躁日日躁狠狠| 蜜桃传媒在线观看入口| 国产精品自在在线午夜精品| 99久久网站| 中国字字幕在线播放2019| 迅雷哥在线观看高清|