色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

人工智能永遠在路上

智能制造 ? 來源:cg ? 2019-01-10 14:42 ? 次閱讀

鄔賀銓院士在演講中表示,互聯(lián)網(wǎng)已經(jīng)是第50年了,50年的互聯(lián)網(wǎng)到現(xiàn)在還保持互聯(lián)網(wǎng)流量年增60%,這些增速也會對未來人工智能技術的發(fā)展有很大的影響。“人工智能會使得我們的生活更美好,或是走到我們的反面,這一切取決于人類自己。”鄔賀銓說到,人工智能永遠在路上,這也就是人工智能的魅力。

中國日報網(wǎng)與網(wǎng)易傳媒共同舉辦的2019影響力峰會在北京召開,首屆影響力峰會的主題為“預見未來”。會上,中國工程院院士鄔賀銓擔任“預見科技未來”發(fā)布人,發(fā)表了主題為“迎接人工智能的未來”的演講。

鄔賀銓院士稱,人工智能技術現(xiàn)在可以做的事情很多,對經(jīng)濟效益也有很大的貢獻。目前來看,AI應用效果比較好的領域有三個,一是醫(yī)療保健,二是汽車,三是金融服務業(yè)。

不過,鄔賀銓院士也同時指出,目前機器學習還有很多不足,一個諾貝爾獎經(jīng)濟學獎得主(Judea Pear)說“人工智能不過是統(tǒng)計學”,還是有很多不足的地方。

對于人工智能下一步如何進化,鄔賀銓院士引用清華大學張鈸院士的觀點說,我們要把感知和認知放到同一個空間里,不是簡單用概率統(tǒng)計的理論,要用模糊級的理論來重新定義它。或者,發(fā)展群體智能。

以下為鄔賀銓院士演講實錄(網(wǎng)易智能做了不改動原意的整理):

各位領導、各位專家早上好。我發(fā)言的題目是“迎接人工智能的未來”。

我們可以看看支撐人工智能發(fā)展的技術,比如CPU芯片、存儲器、光纖、移動通信、超算、大數(shù)據(jù)??用十年的時間來看,有些是60多倍,有些是成本兩萬倍下降,光纖通信10年100倍容量提升,移動通信10年1000倍的速率提升,超算能力1000倍的提升,算法我在這里沒寫,但等會兒會說到,大數(shù)據(jù)量大概是32倍的提升。這是前幾年統(tǒng)計下來的網(wǎng)絡主要設備年均性能改進的增速。

互聯(lián)網(wǎng)已經(jīng)是第50年了,50年的互聯(lián)網(wǎng)到現(xiàn)在還保持互聯(lián)網(wǎng)流量年增60%,這些增速也會對未來人工智能技術的發(fā)展給予很大的影響。

深度神經(jīng)網(wǎng)絡實際上是個分類器

現(xiàn)在深度神經(jīng)網(wǎng)絡,就算你寫本書告訴計算機什么是貓什么是狗,它也學不會,但如果像對待人類小孩的教學方式那樣,感性地把一堆貓和狗的視頻送到深度神經(jīng)網(wǎng)絡,它就會分類,分類結束后,如果照片視頻上有標簽,它就會知道分的這類是貓。如果籃子里有個小狗,放進去,它照樣會分類為“狗”。所以深度神經(jīng)網(wǎng)絡實際上是個分類器,當你告訴它是什么,它就學會了。

機器學習是深度神經(jīng)網(wǎng)絡的主要技術,從近10年里機器學習的論文里可以發(fā)現(xiàn),現(xiàn)在機器學習的技術熱點,可以看到神經(jīng)網(wǎng)絡和進化編程等計算密集型算法在機器學習研究中的出色表現(xiàn)。

人每天吃飯大概要輸入2500卡路里的能量,卡路里換算成焦耳大概是1000萬焦耳,下圍棋5個小時大概要消耗人類3.3兆焦耳。AlphaGo跟李世石下棋時用了1000多個CPU,176個GPU,一個CPU功率100W,1個GPU200W,換算出來是173000W(這是以秒計的),如果5小時就是3000兆焦耳,這相當于李世石用的能耗是AlphaGo能耗的千分之一,也就是說,人工智能目前還需要很大的能量支持。

后來隔了一年,改進了AlphaGo Zero,換算成TPU,它只是AlphaGo原有1/12(能耗),用1/12的能耗跟AlphaGo下棋,100比0,當時AlphaGo還要搜集所有的圍棋棋譜,然后訓練三個月,AlphaGoZero只需要了解圍棋的規(guī)則,兩個AlphaGoZero互相對應,能把所有人類沒有走過的棋譜都走完,它就能戰(zhàn)勝了。所以優(yōu)化算法、改進硬件,包括GPU替換CPU(提高了三倍),TPU替換GPU(提高了15到30倍)。

最近不單AlphaGo Zero圍棋天下無敵,而且通過自學2個小時,還擊敗了日本的將棋(有點像中國的象棋),自學4個小時,把國際象棋也全部打贏了。

人工智能能做的事情有太多

在醫(yī)學上,剛剛過去的三個月,谷歌在機器學習又開發(fā)了Alpha Fold,Alpha Go的折疊,所謂折疊是來預測蛋白質結構的,在蛋白質結構預測的國際競賽里,打敗了所有由人組成的各種團隊,這有什么意義?如果能解釋蛋白質的結構,我們的很多疾?。òò┌Y)可能就會找到解決辦法。所以現(xiàn)在很多人工智能用在醫(yī)學上開發(fā)藥物,美國人工智能能比醫(yī)生提早六年診斷出阿茲海默病,醫(yī)療人工智能的器械也開始投入商用了。除此之外我們看一看蛋白質折疊結構,我們可以通過人工智能將它解釋出來。

我們知道門捷列夫開發(fā)元素周期表用了很長時間,現(xiàn)在假設我們不知道元素周期表,利用人工智能程序,幾個小時就可以把元素周期表重新定義出來。也就是說,人工智能確實能做好多事。

語音識別方面,人工智能已經(jīng)超過了人,一般人類語音識別的錯誤率是5.1%,現(xiàn)在百度對漢語的語音識別,微軟對應于的語音識別已經(jīng)比這個水平要高了。當然,在嘈雜噪聲環(huán)境下,識別率現(xiàn)在也只有54%,不過人更識別不了,人還達不到這個水平。

包括人臉識別,中國上海依圖科技的人臉識別率在萬分之一,誤失率前提下可以通過98%,銀行柜臺人員用肉眼比對,誤差一般在1%,也就是說機器準確性是超過人的眼睛的。

當然,動態(tài)三維活體檢測更難,下面的圖是小布什的原相,右邊的小部什頭像和原圖一樣,但嘴型和上圖的胖子嘴型一樣,我們聽不出胖子講什么,但小布什可以通過口形恢復出他講話的聲音,讀懂唇語。

我們知道張學友在好幾場演唱會上抓到了逃犯,這不是因為張學友,而是演唱會門口的人臉識別門口。所以張學友說“抓逃犯是我的正業(yè),唱歌只是副業(yè)”。

機器視覺應用于什么?這是一個肺部CT照片,大家可以從中發(fā)現(xiàn)有沒有長瘤子、有沒有癌癥,但CT可以掃描出幾百張圖片,很麻煩。我們通過人工智能把這些CT照片還原成一個肺,看看有沒有纖維化,再看看肺周邊的器官怎么樣。

語音識別可以用于醫(yī)學,還有圖像識別,可以重建三維影像,比如醫(yī)學教育,包括在增進醫(yī)療手術的輔導可以起到很好的作用。

在產(chǎn)業(yè)上,清華和英業(yè)達合作(做影像電路板的),影像電路板很復雜,可以看看該連的線是不是連了,不該連的線是不是沒連,人的肉眼很容易錯檢,但利用機器視覺就可以發(fā)覺人的肉眼沒法兒發(fā)現(xiàn)的問題,每年的經(jīng)濟效益9000萬。

看好AI在醫(yī)療保健、汽車和金融服務的應用,但挑戰(zhàn)很大

人工智能對經(jīng)濟效益的貢獻,有一些統(tǒng)計,人工智能可以改進勞動生產(chǎn)率,可以激發(fā)消費需求、可以提高產(chǎn)品質量,有人預測2017到2030年,人工智能對勞動生產(chǎn)率的貢獻超過GDP的55%,其中中國占了全球將近一半,2030年人工智能會帶來7萬億美元的GDP增長貢獻,占GDP的26.1%,這個數(shù)字來源于普華永道,這里面講了幾個領域,是最重要的人工智能應用領域。

AI指數(shù)比較高的應用效果比較好的領域是:一是醫(yī)療保健,二是汽車,三是金融服務業(yè)。

自動駕駛為例,麥肯錫估計2025年帶來的經(jīng)濟規(guī)模將達到萬億美元,降低交通事故,每年能挽救3到15萬人的生命,減少廢氣排放90%,麥肯錫還認為到2030年人工智能可以為全球額外貢獻13萬億美元的GDP增長,普華永道的估計是15.7萬億,平均年均GDP會增加1.2%。后面那句話更重要:足以比肩19世紀的蒸汽機、20世紀的工業(yè)機器人和21世紀的信息技術。

自動駕駛在簡單路況中是好的,復雜路況就很難,因為行人和司機不見到都遵守交通規(guī)則,很難用訓練的辦法掌握,還需要駕駛員的經(jīng)驗和知識,而且人類犯錯是偶然的,機器一旦犯錯可能就是系統(tǒng)性的。

人工智能可以檢測腫瘤,但醫(yī)院還不敢這么用,因為人工智能本身可以告訴你應該做什么,但它不會告訴你為什么,比如人工智能診斷一個病人,最后得出結論“鋸掉一條腿”,但不告訴你為什么,那醫(yī)院敢鋸掉腿嗎?

還有很多功能是人工智能難以勝任的,神經(jīng)網(wǎng)絡是以輸入為導向的算法,首先的前提是大量數(shù)據(jù),而且數(shù)據(jù)要比較準確,如果受了干擾他就很難,醫(yī)生受干擾可能會產(chǎn)生很多錯誤,比如北加州一個組織(美國公民自由聯(lián)盟)利用亞馬遜面部識別算法把美國535位國會議員的照片和美國警察局掌握的2.5萬名罪犯照片進行比對,發(fā)現(xiàn)28個議員被當成了罪犯。分類數(shù)據(jù)終美國的數(shù)據(jù)嚴重偏向白人男性,所以黑皮膚的可能就容易被錯認。

目前機器學習還有很多不足,圖靈獎的獲獎者說,目前機器學習只是曲線的擬合,一個諾貝爾獎經(jīng)濟學獎得主(Judea Pear)說“人工智能不過是統(tǒng)計學”,也就是說目前還是有很多不夠的地方。

剛才我用的兩張圖映射的貓和狗的區(qū)別有個曲線,但只要擬合的地方稍微錯一點,可能就會發(fā)生錯誤。比如本來是熊貓,在照片上加上一些噪音,機器就可能識別成長臂猿,所以人工智能識別目前來講還是比較嬌氣的。

大家看這張圖,有人看是順時針轉,有人看是逆時針轉,哪怕是同一個人,一會兒看著是順時針轉,眨眨眼睛卻變成了逆時針轉,究竟是順還是逆?其實只是左腿在前還是右腿在前的問題,是你的錯覺。

為什么會出現(xiàn)這個錯覺?因為它正好處于人工智能辨識(包括人辨識)的分界線,這時就可能發(fā)生誤導。

比如這個圖里的圓圈,大家都覺得它是滾動的、是圓的,可是真的是這樣嗎?每個球都這樣走嗎?不一定,我們可以看看。實際上每個球走的都是直線,所以人工智能的模型是會被誤導的。

這張圖中最后一個打問號的地方應該放(幾個數(shù)字),人很容易看出來應該放哪個,因為第一行232,第二行343,第三行應該是454,可是人工智能就很難看出來,因為人工智能要獲得人類常識不是那么容易的。

人工智能的進化與對就業(yè)的沖擊

當然,神經(jīng)網(wǎng)絡現(xiàn)在還在演進,關鍵是怎樣選擇正確框架以及訓練,清華大學的張鈸院士說我們要把感知和認知放到同一個空間里,不是簡單用概率統(tǒng)計的理論,要用模糊級的理論來重新定義它,否則我們沒辦法跟機器人交流,機器人之間也沒辦法交流。

機器學習著重于通過數(shù)據(jù)了解環(huán)境,而人類能夠同時洞悉不同的環(huán)境,群體學習是人類與生俱來的本領,而電腦是不具備的。我曾經(jīng)跟一個搞人工智能的公司說,識別語音、下圍棋都不算什么,能不能組織11人的機器人足球隊,什么時候踢贏皇馬了,那你就算厲害了,因為11人的機器人足球隊是要群體活動的。

剛才談到就業(yè),實際上人工智能確實會取代很多現(xiàn)在的就業(yè),49%的勞動人口可能會被取代,但一半以上的人是不會被取代的,因為人工智能沒有情感,有情感創(chuàng)作的文藝工作是不能被取代的,人工智能不能取代文藝,要由人來做。美國高德納咨詢公司以及世界經(jīng)濟論壇發(fā)布的《2018未來就業(yè)》報告中都說,實際上取代了一部分工作,但會新增一些工作崗位。人工智能會帶來數(shù)字鴻溝,發(fā)達國家、先進企業(yè),還會拉大社會貧富懸殊,高智能崗位會增加,一般勞動崗位會減少,自動駕駛出了問題是誰的責任?機器人創(chuàng)作的小說、詩歌是否享有相應的知識產(chǎn)權?有法律道德的問題,還有安全問題,如果人工智能殺人了怎么辦?

最后,如政府規(guī)劃中所說的那樣,加快發(fā)展新一代人工智能,是我們贏得全球科技競爭主動權的重要抓略抓手。

清華大學張鈸院士說,我們現(xiàn)在正在通往AI的路上,現(xiàn)在走得并不遠,在出發(fā)點附近,但人工智能永遠在路上,大家要有思想準備,而這也就是人工智能的魅力。

人工智能會使得我們的生活更美好,或是走到我們的反面,這一切取決于人類自己。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

原文標題:鄔賀銓院士 | 人工智能的魅力是它永遠在路上

文章出處:【微信號:mfg2025,微信公眾號:智能制造】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    嵌入式和人工智能究竟是什么關系?

    嵌入式和人工智能究竟是什么關系? 嵌入式系統(tǒng)是一種特殊的系統(tǒng),它通常被嵌入到其他設備或機器中,以實現(xiàn)特定功能。嵌入式系統(tǒng)具有非常強的適應性和靈活性,能夠根據(jù)用戶需求進行定制化設計。它廣泛應用于各種
    發(fā)表于 11-14 16:39

    《AI for Science:人工智能驅動科學創(chuàng)新》第6章人AI與能源科學讀后感

    幸得一好書,特此來分享。感謝平臺,感謝作者。受益匪淺。 在閱讀《AI for Science:人工智能驅動科學創(chuàng)新》的第6章后,我深刻感受到人工智能在能源科學領域中的巨大潛力和廣泛應用。這一章詳細
    發(fā)表于 10-14 09:27

    AI for Science:人工智能驅動科學創(chuàng)新》第4章-AI與生命科學讀后感

    很幸運社區(qū)給我一個閱讀此書的機會,感謝平臺。 《AI for Science:人工智能驅動科學創(chuàng)新》第4章關于AI與生命科學的部分,為我們揭示了人工智能技術在生命科學領域中的廣泛應用和深遠影響。在
    發(fā)表于 10-14 09:21

    《AI for Science:人工智能驅動科學創(chuàng)新》第一章人工智能驅動的科學創(chuàng)新學習心得

    周末收到一本新書,非常高興,也非常感謝平臺提供閱讀機會。 這是一本挺好的書,包裝精美,內容詳實,干活滿滿。 《AI for Science:人工智能驅動科學創(chuàng)新》這本書的第一章,作為整個著作的開篇
    發(fā)表于 10-14 09:12

    risc-v在人工智能圖像處理應用前景分析

    RISC-V在人工智能圖像處理領域的應用前景十分廣闊,這主要得益于其開源性、靈活性和低功耗等特點。以下是對RISC-V在人工智能圖像處理應用前景的詳細分析: 一、RISC-V的基本特點 RISC-V
    發(fā)表于 09-28 11:00

    人工智能ai 數(shù)電 模電 模擬集成電路原理 電路分析

    人工智能ai 數(shù)電 模電 模擬集成電路原理 電路分析 想問下哪些比較容易學 不過好像都是要學的
    發(fā)表于 09-26 15:24

    人工智能ai4s試讀申請

    目前人工智能在繪畫對話等大模型領域應用廣闊,ai4s也是方興未艾。但是如何有效利用ai4s工具助力科研是個需要研究的課題,本書對ai4s基本原理和原則,方法進行描訴,有利于總結經(jīng)驗,擬按照要求準備相關體會材料??茨芊裼兄谌腴T和提高ss
    發(fā)表于 09-09 15:36

    名單公布!【書籍評測活動NO.44】AI for Science:人工智能驅動科學創(chuàng)新

    ! 《AI for Science:人工智能驅動科學創(chuàng)新》 這本書便將為讀者徐徐展開AI for Science的美麗圖景,與大家一起去了解: 人工智能究竟幫科學家做了什么? 人工智能將如何改變我們所生
    發(fā)表于 09-09 13:54

    報名開啟!深圳(國際)通用人工智能大會將啟幕,國內外大咖齊聚話AI

    8月28日至30日,2024深圳(國際)通用人工智能大會暨深圳(國際)通用人工智能產(chǎn)業(yè)博覽會將在深圳國際會展中心(寶安)舉辦。大會以“魅力AI·無限未來”為主題,致力于打造全球通用人工智能領域集產(chǎn)品
    發(fā)表于 08-22 15:00

    FPGA在人工智能中的應用有哪些?

    FPGA(現(xiàn)場可編程門陣列)在人工智能領域的應用非常廣泛,主要體現(xiàn)在以下幾個方面: 一、深度學習加速 訓練和推理過程加速:FPGA可以用來加速深度學習的訓練和推理過程。由于其高并行性和低延遲特性
    發(fā)表于 07-29 17:05

    人工智能概述

    人工智能關鍵技術概述
    發(fā)表于 07-17 17:17 ?0次下載

    5G智能物聯(lián)網(wǎng)課程之Aidlux下人工智能開發(fā)(SC171開發(fā)套件V2)

    5G智能物聯(lián)網(wǎng)課程之Aidlux下人工智能開發(fā)(SC171開發(fā)套件V2) 課程類別 課程名稱 視頻課程時長 視頻課程鏈接 課件鏈接 人工智能 參賽基礎知識指引 14分50秒 https
    發(fā)表于 05-10 16:46

    5G智能物聯(lián)網(wǎng)課程之Aidlux下人工智能開發(fā)(SC171開發(fā)套件V1)

    課程類別 課程名稱 視頻課程時長 視頻課程鏈接 課件鏈接 人工智能 參賽基礎知識指引 14分50秒 https://t.elecfans.com/v/25508.html *附件:參賽基礎知識指引
    發(fā)表于 04-01 10:40

    嵌入式人工智能的就業(yè)方向有哪些?

    嵌入式人工智能的就業(yè)方向有哪些? 在新一輪科技革命與產(chǎn)業(yè)變革的時代背景下,嵌入式人工智能成為國家新型基礎建設與傳統(tǒng)產(chǎn)業(yè)升級的核心驅動力。同時在此背景驅動下,眾多名企也紛紛在嵌入式人工智能領域布局
    發(fā)表于 02-26 10:17

    生成式人工智能和感知式人工智能的區(qū)別

    生成式人工智能和感知式人工智能人工智能領域中兩種重要的研究方向。本文將探討這兩種人工智能的區(qū)別。 生成式人工智能(Generative A
    的頭像 發(fā)表于 02-19 16:43 ?1962次閱讀
    主站蜘蛛池模板: 港台三级大全| 可以看的黄页的网站| 人人在线碰碰视频免费| 国产欧美日韩亚洲第一页| 新影音先锋男人色资源网| 乱爱性全过程免费视频| 国产三级影院| 成人片在线播放| 97久久伊人精品影院| 日韩a视频在线观看| 国产精品无码AV天天爽色欲| 亚洲欧美综合中文字幕| 久久久无码精品亚洲欧美| aaaaaa级特色特黄的毛片| 色欲AV精品人妻一二三区| 免费看黄色小说| 国产成人在线视频免费观看| 18禁止观看免费私人影院| 色色噜一噜| 欧美精品成人一区二区在线观看| 国产精品久久久久久人妻精品流| a在线视频免费观看| 亚洲黄色在线观看| 色欲久久综合亚洲精品蜜桃| 欧美精品AV一区二区无码| 麻豆免费高清完整版| 国产精品免费一区二区三区视频| 99热6精品视频6| 97人妻精品全国免费视频| 在线a亚洲视频| 伊人久久影院大香线蕉| 亚洲乱码国产乱码精品精98| 校花的奶好大好浪| 午夜伦午夜伦锂电影| 欧美97色伦综合网| 麻豆COMCN| 蜜饯1V1高H-| 男人J桶女人P视频无遮挡网站| ZZoo兽2皇| 伊人久久综合| 亚洲黄色高清|