據麥姆斯咨詢報道,麻省理工學院(MIT)跨學科量子工程組(QEG)博士生David Layden采用了一種新的空間噪聲濾波方法,可以促進超靈敏量子傳感器的發展。
麻省理工學院跨學科量子工程組(QEG)博士生David Layden
雖然量子技術在計算應用中具有很大的長期潛力,但它們在傳感應用方面更接近于實際,由于能夠測量與光子、粒子和神經元一樣微小的結構,量子技術將在計量學、生物學、神經科學等許多其他領域開辟新的應用前景。麻省理工學院跨學科量子工程組(QEG)的新研究正著力于解決量子傳感器系統面臨的基本挑戰之一:從被測信號中去除環境噪聲。根據QEG博士生David Layden的解釋,問題的根源在于量子傳感器對周圍環境的極端敏感性。
這些傳感器通常基于量子兩種不同狀態的疊加效應。微小的外力作用可引起兩種狀態之間的相位變化,可以利用此變化來進行溫度、運動、電場和磁場等物理量的測量,且測量精度可達到前所未有的分辨率。但是如此高的靈敏度意味著傳感器除了感興趣的信號之外,還會將許多無關的環境噪聲一并拾取。通過一種被稱為退相干的過程,這種噪聲會給量子傳感器的相位關系帶來不確定性,并限制了它們進行精確測量的能力。于是一些降噪技術被研發出來,用以通過減少退相干來提高靈敏度。其中一種常見的技術是動態去耦——將一系列控制脈沖引入系統中,根據頻率來過濾信號中的噪聲。但是,這種技術與DC信號不兼容,而通常傳感器測量的信號正是DC信號。
在過去的幾十年中,對量子計算的研究也增加了糾錯方案,如使用冗余量子比特。雖然這些在信息處理應用中很有效,但它們對傳感器卻有很大的局限性。“計算領域的標準在這里有點矯枉過正,”Layden說,“它的確非常擅長糾正錯誤并降低噪音,但它往往還糾正了正常信號,因為它無法區分這兩者。”最近,在研制出的誤差校正量子傳感(ECQS)技術中,一種復原操作可有效地去除與信號不同方向的影響傳感器的噪聲——比如噪聲沿著x軸而信號沿著z軸時。
然而,這些基于幾何的技術想要區分來自相同方向的影響傳感器的噪聲和信號很困難,而這類情況更常見。在最近發表在npj Quantum Information(量子信息)雜志上的一篇論文中,Layden和Paola Cappellaro(Esther和Harold E. Edgerton核科學與工程副教授和QEG領導人),揭示了一種新的方法,將已建立的ECQS校正技術應用于從同一個方向發出的信號和噪聲。該方法能夠實現與頻率無關的濾波,因為它利用了空間而非時間的噪聲相關性。“對量子計算而言,通常的錯誤糾正方法就是盡可能廣的撒網以盡可能多的糾正,” Layden說,“在傳感應用中,您需要非常仔細地在網絡中形成適當范圍的孔,以便通過您正在尋找的特定信號。
實際上,我們正在調整現有的信號處理技術以用于量子器件。令人驚訝的是,這些表面上看似無關的量子計算和信號處理的理念居然可以無縫融合在一起。”作為量子傳感器降噪技術的核心要求,區分信號與噪聲可以通過多種方式完成。除了過去的ECQS技術中使用的幾何方法之外,研究人員還充分利用了一個事實,即許多量子器件中的噪聲并非完全不可預測,而是充滿了相關性。例如,動態去耦就利用了在不同時間的噪聲相關性。類似地,QEG研究人員的新ECQS方案利用了量子傳感器在不同位置的噪聲相關性。
通過這種方式,即使兩者都在相同方向(例如沿z軸)的常見情況下,新方法也可以從噪聲中分辨出信號。Layden和Cappellaro的方法是對現有DD和ECQS方法的補充,這是有用的,因為噪聲源在不同的傳感應用中變化很大。多樣化滿足不同需求的濾波工具,以及新方法還為量子傳感器打通了新的應用之門,可以實現校正全三維空間的噪聲。
雖然迄今為止的發展主要是理論上的,但QEG實驗室的實驗研究正在進行,包括評估不同類型量子系統面臨的噪聲挑戰。“我們一直致力于開發類似的研究,”Layden解釋道,“小規模實施最近才剛實現;雖然關于大規模量子器件如何運作有許多理論觀點,但似乎任何實際的進展近期都只能達到中等規模,新開發的QEG技術可能會證明特別有用。”Layden和Cappellaro還與來自耶魯大學的合作者協作,共同推進他們項目的理論研究。
項目資金由美國陸軍研究室、國家科學基金會和加拿大自然科學與工程研究委員會提供。“我們還沒有達到獲得實驗結果的階段,但我們正在構建硬件并不斷地進行模擬,來回的反復和相互作用不僅使這個項目成型,還影響了幾個相關項目。”Layden補充道。
-
傳感器
+關注
關注
2552文章
51382瀏覽量
755826 -
MIT
+關注
關注
3文章
253瀏覽量
23444
原文標題:MIT采用新的空間噪聲濾波法實現超靈敏量子傳感器
文章出處:【微信號:MEMSensor,微信公眾號:MEMS】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論