對(duì)于10Gbps及以上數(shù)據(jù)速率的SerDes,每個(gè)數(shù)據(jù)位的單位間隔是隨著近 20~30ps的信號(hào)上升/下降時(shí)間而縮短的。選擇合適的封裝互連結(jié)構(gòu),有效地傳輸這些信號(hào)已成為最大限度減少信號(hào)完整性問(wèn)題的重要考慮因素,如串?dāng)_、阻抗不連續(xù)性等。對(duì)于低成本應(yīng)用,鍵合線封裝是替代相對(duì)高端的倒裝芯片封裝的首選方案,但它缺乏執(zhí)行大I/O數(shù)、控制阻抗及為芯片提供有效電源的設(shè)計(jì)靈活性。
將討論通過(guò)優(yōu)化封裝內(nèi)的阻抗不連續(xù)性和改善其回波損耗性能,以滿足10Gbps SerDes鍵合線封裝規(guī)范。
1、差分阻抗
一個(gè)典型的SerDes通道包含使用兩個(gè)單獨(dú)互連結(jié)構(gòu)的互補(bǔ)信號(hào)發(fā)射器和接收器之間的信息交換。兩個(gè)端點(diǎn)之間的物理層包括一個(gè)連接到子卡的鍵合線封裝或倒裝芯片封裝的發(fā)射器件。子卡通過(guò)一個(gè)連接器插在背板上。背板上的路由通過(guò)插入的子卡連接到一個(gè)或一組連接器。采用鍵合線或倒裝芯片封裝的接收芯片也位于這些子卡上。
如果設(shè)計(jì)不合適,一個(gè)通道中的這些多重轉(zhuǎn)換將會(huì)影響信號(hào)完整性性能。在10Gbps及以上,通過(guò)最大限度地減少阻抗不連續(xù)性,得到適合的互連設(shè)計(jì)已成為提高系統(tǒng)性能的一個(gè)重要的考慮因素。由于封裝內(nèi)有許多不連續(xù)區(qū),該收發(fā)器封裝在提高回波損耗性能方面存在一個(gè)重要瓶頸。
SerDes通道設(shè)計(jì)通常為100Ω差分阻抗。由于差分信號(hào)采用奇模傳播,差分對(duì)的每線奇模阻抗都必須是50Ω。差分對(duì)的每線信號(hào)都需要有50Ω的恒阻抗,以盡量減少回波損耗,最大限度地提高性能。
損耗較少的系統(tǒng)的奇模阻抗定義為:
為了優(yōu)化每線阻抗,所有四個(gè)分量都需要平衡,以達(dá)到50Ω阻抗。對(duì)于差分對(duì),在每一個(gè)單端信號(hào)傳送一對(duì)信號(hào),L12和C12分量都不存在,Zodd是自L/C的平方根。
2、一次預(yù)處理封裝
有三個(gè)差分對(duì)的典型的鍵合線封裝的截面如圖1所示。發(fā)射器對(duì)以藍(lán)色顯示,居中的接收器對(duì)為紅色。該封裝基板是一個(gè)傳統(tǒng)的4層基板,頂層有微帶印制線,第二層和第三層是電源/接地,焊球在最后一層。這個(gè)一次預(yù)處理設(shè)計(jì)的優(yōu)化可以滿足基頻數(shù)據(jù)速率下-15dB和一次諧波頻率數(shù)據(jù)速率下-10dB的回波損耗規(guī)范。
圖1 一次預(yù)處理封裝
一個(gè)典型的鍵合線封裝可以分成三個(gè)阻抗區(qū);主要是感應(yīng)鍵合線區(qū)、印制線路由傳輸線區(qū)和電容焊球/通孔區(qū)。
3、單端和差分TDR響應(yīng)
時(shí)域反射計(jì)(TDR)技術(shù)用來(lái)監(jiān)控從芯片到PCB的信號(hào)遇到的阻抗。圖2顯示了作為一個(gè)單端信號(hào),也可作為一個(gè)差分信號(hào)驅(qū)動(dòng)的差分對(duì)中的每線TDR響應(yīng)。圖1中只有一個(gè)對(duì)用于TDR分析,而其他對(duì)接地,忽略串?dāng)_對(duì)TDR響應(yīng)的影響。單端TDR曲線顯示了主要電感、后面跟著一小段傳輸線的高阻抗鍵合線區(qū)互連結(jié)構(gòu),其后面是電容、低阻抗通孔和焊球區(qū)。由于在差分對(duì)鍵合線區(qū)有強(qiáng)大的相互感耦合,當(dāng)相同的結(jié)構(gòu)進(jìn)行差分驅(qū)動(dòng)時(shí),電感鍵合線尖峰不太明顯。由于差分設(shè)置的互電容增加了一倍,電容dip顯著惡化。消除來(lái)自通孔/焊球區(qū)的額外電容是實(shí)現(xiàn)100Ω 差分阻抗的關(guān)鍵。圖2 還顯示了焊點(diǎn)區(qū)的電場(chǎng)(E-field)曲線,以及集中在焊點(diǎn)上的強(qiáng)電場(chǎng)。
圖2 單端和差分TDR曲線
4、提高TDR 性能
圖3顯示了原來(lái)布局的變化(在焊點(diǎn)/通孔區(qū))及其對(duì)差分TDR性能的影響。這些略大于焊點(diǎn)的孔是在焊點(diǎn)上的金屬層Layout_2上實(shí)現(xiàn)的。原有布局的電容dip現(xiàn)在大約小到20Ω。另一個(gè)來(lái)自Layout_2的試圖修改的部分是從松散耦合到緊耦合來(lái)改變通孔定位,如Layout_3所示。緊耦合通孔旨在提高差分對(duì)的串?dāng)_性能。它已在另一項(xiàng)研究中得到證明,串?dāng)_性能的改善微乎其微,這里不介紹這項(xiàng)研究的其他內(nèi)容。Layout_3的粉色波形顯示,由于額外兩個(gè)通孔之間的電容耦合,電容dip略差。
圖3 三種布局的差分TDR響應(yīng)
5、回波損耗性能的影響
圖4顯示了每次修改后回波損耗性能的影響。Layout_3原始布局的整體回波損耗最差。Layout_2 顯示出最佳的整體回波損耗,它直接關(guān)系到其TDR性能。
在5GHz下Layout_2的回波損耗為-16dB,而在10GHz下為-14dB,可以輕易滿足基頻為-15dB的規(guī)范,以及10Gbps SerDes接口一次諧波頻率-10dB的規(guī)范。
圖4 每次修改后回波損耗性能的影響
芯片焊點(diǎn)環(huán)布局的影響為了盡量減少對(duì)間串?dāng)_,理想的是用回波焊點(diǎn)隔開(kāi)芯片上的每個(gè)差分對(duì)。當(dāng)邊緣速率在20-30ps級(jí)時(shí),由于干擾源-受擾者串?dāng)_,可能嚴(yán)重惡化接收器性能,這一點(diǎn)至關(guān)重要。要保持通孔和焊球焊點(diǎn)區(qū)與Layout_2一致,圖5給出了與芯片封裝鍵合線連接相關(guān)的兩個(gè)額外的封裝布局變化。
圖5 片芯焊點(diǎn)環(huán)和鍵合線布局變化
圖6顯示了三個(gè)布局的差分TDR和回波損耗性能。藍(lán)色的Layout_2響應(yīng)與前邊的圖一樣。由于相對(duì)較小的間斷電感,但其頻域影響不變,Layout_4的TDR性能稍好。Layout_5 TDR響應(yīng)顯示,由于相對(duì)于其他兩個(gè)布局的鍵合線,感應(yīng)尖峰幾乎為2倍。圖6也顯示了長(zhǎng)鍵合線對(duì)回波損耗性能惡化的直接影響。
圖6 由于 片芯焊點(diǎn)環(huán)和鍵合線布局的改變影響了TDR和回波損耗性能
主要解釋了鍵合線封裝中的兩個(gè)主要不連續(xù)區(qū);討論了10Gbps數(shù)據(jù)速率范圍優(yōu)化鍵合線封裝布局的快速技術(shù);也顯示了鍵合線長(zhǎng)度對(duì)回波損耗性能惡化的影響。
-
封裝
+關(guān)注
關(guān)注
127文章
7949瀏覽量
143109 -
回波損耗
+關(guān)注
關(guān)注
1文章
25瀏覽量
10129
原文標(biāo)題:10G SerDes 封裝優(yōu)化
文章出處:【微信號(hào):eda365wx,微信公眾號(hào):EDA365電子論壇】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論