什么是電動機控制
電機控制是指,對電機的啟動、加速、運轉、減速及停止進行的控制。根據不同電機的類型及電機的使用場合有不同的要求及目的。對于電動機,通過電機控制,達到電機快速啟動、快速響應、高效率、高轉矩輸出及高過載能力的目的。
什么是控制回路
控制回路通常是針對模擬量的控制來說,一個控制器根據一個輸入量,按照一定的規則和算法來決定一個輸出量,這樣,輸入和輸出就形成一個控制回路。
控制回路有開環和閉環的區別。開環控制回路,指輸出是根據一個參考量而定,輸入和輸出量沒有直接的關系。而閉環回路則將控制回路的輸出再反饋回來作為回路的輸入,與該量的設定值或應該的輸出值作比較。閉環回路控制又叫反饋控制,是控制系統中最常見的控制方式。
控制回路的作用
控制回路又稱操作回路、控制電路。控制回路的作用是實現對設備的有效控制,包括設備的起動停止、電氣線路的投運和斷開以及其他要求的運行狀態的改變等,也控制機電元件(例如電磁鐵) 的通電和斷電。
控制回路主要是通過控制斷路器或接觸器、繼電器的接通和斷開來實現對設備的控制。
控制回路中的元件
(1)發出指令的主令電器。包括各種按鈕和轉換開關、行程開關、限位開關等。
(2)擴展功能并構成邏輯動作關系的控制繼電器。例如中間繼電器、時間繼電器等。
(3)執行元件。及斷路器的跳閘線圈、合閘線圈和合閘接觸器,交流接觸器的線圈,液壓和空氣動力系統中的控制設備(電氣控制閥) 上的電磁鐵等。
(4)信號元件。例如表示斷路器所處狀態的信號燈。
(5)斷路器、接觸器的輔助觸點等。
控制回路的分類
控制回路大體可分為兩大類:
(1)與主電路分離的獨立控制電路。此類控制電路與主電路之間沒有電的連接。高壓設備和重要設備的操作回路都采用與主電路分離獨立的控制電路。
(2)控制電路與主電路之間有電氣連接的電路。采用中小型電動機作動力的機電設備(電壓為380/220V 以下),許多都采用與主電路連接的控制電路。
控制回路電壓選擇應注意的問題
控制回路電壓常采用.24V、~220V 和~380V,以~220V居多。當控制線路較長時,就必須考慮平衡線路電容電流和電壓損失的影響。合理選擇控制電壓。
導線的臨界長度
若控制線路超過臨界長度。當發出停機命令時,由于線路上存在雜散電流(如線路較長時會加大線路的電容電流),該電流將繼續維持接觸器的吸合,會造成無法停機的故障。
線路壓降
若控制線路壓降過大。起動時。接觸器無法吸合,會造成設備無法起動。
電動機啟動控制回路
想要電動機啟動,可不是合上閘這么簡單。想要實現遠程控制和多點控制,需要做的還有很多。本文列舉幾個最基本的電動機控制回路,除了在生產中的機械控制需要用到外,在設計PLC電路時,這些也是必備單元。
點動與連動
點動:即按下按鈕時電動機啟動,松開后電動機停止。
連動:即按下按鈕時電動機啟動,松開后電動機繼續運轉。
電路▼
上圖中,左側為主回路,右側的a,b,c三個圖分別為三個不同的控制回路。
在圖a中,按下按鈕SB,電動機啟動,松開后電動機停止。是典型的點動控制。
在圖b中,斷路器SA斷開時,按下按鈕SB2,接觸器線圈KM通電,常開觸點KM閉合,但是常開觸點KM下方有斷路器將它斷開,因此雖然此時電動機啟動,但是松開后還是會停止。閉合斷路器SA后,按下按鈕SB2,接觸器線圈KM通電,此時常開觸點KM閉合,因此松開SB2后,電動機依然可以正常運轉。此時電動機連動。因此,此圖可以人工控制點動或連動狀態。
在圖c中,沒有斷路器,取而代之的是一個機械互鎖開關SB3。當按下按鈕SB2時,接觸器線圈通電,常開觸點KM閉合,電動機啟動,松開后,由于常開觸點依然閉合,因此電動機正常運轉。按下按鈕SB3時,接觸器常開觸點下方的按鈕常閉觸點SB3斷開,同時按鈕SB3常開觸點閉合,電動機啟動,松開后電動機停止(接觸器常開觸點此時未接入電路)。因此,此電路可在電動機連動的時候,直接按下SB3,變成點動。
電動機連動時,松開啟動按鈕后,由于接觸器線圈通電,常開觸點KM閉合,電動機可以實現連續運轉,這個概念就叫做“自鎖”。
電動機點動與連動只是一種概念,沒有人希望自己的電動機點動。此處我們只需要知道如何讓電動機連續運轉即可。
電動機的異地控制
本篇以兩地控制電動機為例。多地控制電動機,一般分為遠程控制和就地控制。即把啟動按鈕分別放入不同的按鈕箱,再把按鈕箱安裝在需要控制的地點。
電路▼
有了點動和連動的知識,這個圖中接觸器KM的作用就不必多說了。圖中SB11和SB21為停止按鈕,SB12和SB22為啟動按鈕。其中把任意一個啟動按鈕和停止按鈕安裝在同一個按鈕箱內,另外兩個也安裝在另外一個按鈕箱內。兩個按鈕箱可分別放在控制室和電動機旁。
實物連接圖▼
異地控制電動機時,只需要注意,停止按鈕全部串聯,啟動按鈕全部并聯即可。
電動機順序啟動
以兩臺電動機M1,M2順序啟動為例。要求M2在M1啟動后才能啟動,M1可以單獨啟動。
電路▼
其中,按鈕SB1和SB3是停止按鈕,分別控制電動機M1與M2;按鈕SB2和SB4是啟動按鈕,分別控制電動機M1與M2。為了方便理解,我把電路圖中M2的控制回路突出來一塊,即當下文提到M2的控制回路時,指的就是上圖中最右側突出來的那一塊。
同樣的,接觸器的作用不再贅述。如圖,當M1未運轉時,即常開觸點KM1沒有閉合,此時M2的控制回路被斷開,因此按下啟動按鈕SB4時,M2沒反應。只有當M1正常運轉時,KM1閉合,M2的控制回路才有電,這時M2才能正常啟動。
實物連接圖▼
若需要多個電動機同時啟動,分兩種情況:
若需要其它電機在M1啟動后才能啟動,則把該電機的控制回路與M2的控制回路并聯。
若需要其它電機在M2啟動后才能啟動,則把該電機的控制回路與M2的控制回路串聯。
電動機正反轉
要實現電動機的正反轉,用到的原理是使用兩個接觸器,把三相電的相序改變。
電路▼
注意看左側的主回路,三項電L1,L2,L3通過接觸器KM1到達電動機M1的順序為左、中、右;而通過接觸器KM2到達電動機M1的順序為右、中、左。相序的改變實現了電機運轉方向的改變。這一用法用在電動汽車或電動三輪車上,即可實現倒車的功能。現在有一種更方便的元件,叫做“倒順開關”,其原理便是如此。
為了方便描述,假設在SB2回路閉合時電動機轉動的方向為正,下文稱SB2所在回路為正轉回路,SB3所在回路為反轉回路。
我們來看控制回路,為了方便講解,我們在圖中做了數字的編號,每一個編號,都對應其正上方的元件。同樣的,對于接觸器常開線圈KM1和KM2的作用不再重復。
這張圖如果沒有編號6和編號9那兩個接觸器常閉觸點,和編號5和編號8那兩個機械互鎖按鈕的常閉觸點,就很好理解。即按下SB2,電動機正轉,按下SB3,電動機反轉。
這里出現了一個問題,就是如果同時按下SB2和SB3或在電動機正轉的時候按下SB3,就會造成短路事故。因此我們在電路中接入了接觸器常閉觸點。在正轉的控制回路中接入KM2的常閉觸點,而在反轉的控制回路中接入KM1的常閉觸點。這樣以來,當電動機正轉時,由于接觸器KM1的線圈通電,因此常閉觸點KM1是斷開狀態,因此就算此時按下按鈕SB3,也不會有任何反應。
兩個接觸器的常閉觸點分別連接到對方所在回路中,如此一來,其中一個接觸器通電時,另一個接觸器就不能再通電,這就是“互鎖”。
此時我們還面臨一個麻煩事,就是電動機正轉時,如果想讓它反轉,唯一的辦法就是按下停止按鈕,再按反轉按鈕,這樣就很麻煩。為了方便,我們采用了機械互鎖的按鈕,并把它的常閉觸點接入旁邊的控制回路中——就是圖中的編號5和編號8。
此時,當電動機正轉時,我們按下SB3,此時編號5的常閉觸點斷開,即正轉回路失電,因此線圈KM1失電,常閉觸點KM1恢復閉合狀態,線圈KM2即可得電,反轉回路正常運行。這樣以來,在電動機正轉切換反轉時,就不用再按停止按鈕了。
實物連接圖▼
-
電動機
+關注
關注
75文章
4115瀏覽量
96652 -
控制回路
+關注
關注
3文章
105瀏覽量
15501
發布評論請先 登錄
相關推薦
評論