摘要:概率分布在許多領域都很常見,包括保險、物理、工程、計算機科學甚至社會科學,如心理學和醫學。它易于應用,并應用很廣泛。本文重點介紹了日常生活中經常能遇到的六個重要分布,并解釋了它們的應用。
01 介紹
假設你是一所大學的老師。在對一周的作業進行了檢查之后,你給所有的學生打了分數。你把這些打了分數的論文交給大學的數據錄入人員,并告訴他創建一個包含所有學生成績的電子表格。但這個人卻只存儲了成績,而沒有包含對應的學生。
他又犯了另一個錯誤,在匆忙中跳過了幾項,但我們卻不知道丟了誰的成績。我們來看看如何來解決這個問題吧。
一種方法是將成績可視化,看看是否可以在數據中找到某種趨勢。
上面展示的圖形稱為數據的頻率分布。其中有一個平滑的曲線,但你注意到有一個異常情況了嗎?在某個特定的分數范圍內,數據的頻率異常低。所以,最準確的猜測就是丟失值了,從而導致在分布中出現了凹陷。
這個過程展示了你該如何使用數據分析來嘗試解決現實生活中的問題。對于任何一位數據科學家、學生或從業者來說,分布是必須要知道的概念,它為分析和推理統計提供了基礎。
雖然概率為我們提供了數學上的計算,而分布卻可以幫助我們把內部發生的事情可視化。
在本文中,我將介紹一些重要的概率分布,并會清晰全面地對它們進行解釋。
注意:本文假設你已經具有了概率方面的基本知識。如果沒有,可以參考這篇有關概率基礎的文章。
02 常見的數據類型
在開始詳細講述分布之前,先來看看我們會遇到哪些種類的數據。數據可以分為離散的和連續的。
離散數據:顧名思義,只包含指定的值。例如,當你投骰子的時候,輸出結果只可能是1、2、3、4、5或6,而不可能出現1.5或2.45。
連續數據:可以在給定的范圍內取任何值。范圍可以是有限的,也可以是無限的。例如,女孩的體重或身高、路程的長度。女孩的體重可以是54千克、54.5千克,或54.5436千克。
現在我們開始學習分布的類型。
03 分布的類型
伯努利分布
我們首先從最簡單的分布伯努利分布開始。
伯努利分布只有兩種可能的結果,1(成功)和0(失敗)。因此,具有伯努利分布的隨機變量X可以取值為1,也就是成功的概率,可以用p來表示,也可以取值為0,即失敗的概率,用q或1-p來表示。
概率質量函數由下式給出:px(1-p)1-x, 其中x € (0, 1)。它也可以寫成:
成功與失敗的概率不一定相等。這里,成功的概率(p)與失敗的概率不同。所以,下圖顯示了我們之間比賽結果的伯努利分布。
這里,成功的概率 = 0.15,失敗的概率 = 0.85 。如果我打了你,我可能會期待你向我打回來。任何分布的基本預期值是分布的平均值。來自伯努利分布的隨機變量X的期望值如為:
E(X) = 1*p + 0*(1-p) = p
隨機變量與二項分布的方差為:
V(X) = E(X2) – [E(X)]2 = p – p2 = p(1-p)
伯努利分布的例子有很多,比如說明天是否要下雨,如果下雨則表示成功,如果不下雨,則表示失敗。
均勻分布
對于投骰子來說,結果是1到6。得到任何一個結果的概率是相等的,這就是均勻分布的基礎。與伯努利分布不同,均勻分布的所有可能結果的n個數也是相等的。
如果變量X是均勻分布的,則密度函數可以表示為:
均勻分布的曲線是這樣的:
你可以看到,均勻分布曲線的形狀是一個矩形,這也是均勻分布又稱為矩形分布的原因。其中,a和b是參數。
花店每天銷售的花束數量是均勻分布的,最多為40,最少為10。我們來計算一下日銷售量在15到30之間的概率。
日銷售量在15到30之間的概率為(30-15)*(1/(40-10)) = 0.5
同樣地,日銷售量大于20的概率為 = 0.667
遵循均勻分布的X的平均值和方差為:
平均值 -> E(X) = (a+b)/2
方差 -> V(X) = (b-a)2/12
標準均勻密度的參數 a = 0 和 b = 1,因此標準均勻密度由下式給出:
二項分布
讓我們來看看玩板球這個例子。假設你今天贏了一場比賽,這表示一個成功的事件。你再比了一場,但你輸了。如果你今天贏了一場比賽,但這并不表示你明天肯定會贏。我們來分配一個隨機變量X,用于表示贏得的次數。 X可能的值是多少呢?它可以是任意值,這取決于你擲硬幣的次數。
只有兩種可能的結果,成功和失敗。因此,成功的概率 = 0.5,失敗的概率可以很容易地計算得到:q = p – 1 = 0.5。
二項式分布就是只有兩個可能結果的分布,比如成功或失敗、得到或者丟失、贏或敗,每一次嘗試成功和失敗的概率相等。
結果有可能不一定相等。如果在實驗中成功的概率為0.2,則失敗的概率可以很容易地計算得到 q = 1 - 0.2 = 0.8。
每一次嘗試都是獨立的,因為前一次投擲的結果不能決定或影響當前投擲的結果。只有兩個可能的結果并且重復n次的實驗叫做二項式。二項分布的參數是n和p,其中n是試驗的總數,p是每次試驗成功的概率。
在上述說明的基礎上,二項式分布的屬性包括:
1. 每個試驗都是獨立的。
2. 在試驗中只有兩個可能的結果:成功或失敗。
3. 總共進行了n次相同的試驗。
4. 所有試驗成功和失敗的概率是相同的。 (試驗是一樣的)
二項分布的數學表示由下式給出:
成功概率不等于失敗概率的二項分布圖:
現在,當成功的概率 = 失敗的概率時,二項分布圖如下
二項分布的均值和方差由下式給出:
平均值 -> μ = n*p
方差 -> Var(X) = n*p*q
正態分布
正態分布代表了宇宙中大多數情況的運轉狀態。大量的隨機變量被證明是正態分布的。任何一個分布只要具有以下特征,則可以稱為正態分布:
1. 分布的平均值、中位數和模式一致。
2. 分布曲線是鐘形的,關于線 x = μ 對稱。
3. 曲線下的總面積為1。
4. 有一半的值在中心的左邊,另一半在右邊。
正態分布與二項分布有著很大的不同。然而,如果試驗次數接近于無窮大,則它們的形狀會變得十分相似。
遵循正態分布的隨機變量X的值由下式給出:
正態分布的隨機變量X的均值和方差由下式給出:
均值 -> E(X) = μ
方差 -> Var(X) = σ^2
其中,μ(平均)和σ(標準偏差)是參數。
隨機變量X?N(μ,σ)的圖如下所示。
標準正態分布定義為平均值等于0,標準偏差等于1的分布:
泊松分布
假設你在一個呼叫中心工作,一天里你大概會接到多少個電話?它可以是任何一個數字。現在,呼叫中心一天的呼叫總數可以用泊松分布來建模。這里有一些例子:
1. 醫院在一天內錄制的緊急電話的數量。
2. 某個地區在一天內報告的失竊的數量。
3. 在一小時內抵達沙龍的客戶人數。
4. 在特定城市上報的自殺人數。
5. 書中每一頁打印錯誤的數量。
泊松分布適用于在隨機時間和空間上發生事件的情況,其中,我們只關注事件發生的次數。
當以下假設有效時,則稱為**泊松分布**
1. 任何一個成功的事件都不應該影響另一個成功的事件。
2. 在短時間內成功的概率必須等于在更長的間內成功的概率。
3. 時間間隔變小時,在給間隔時間內成功的概率趨向于零。
泊松分布中使用了這些符號:
λ是事件發生的速率
t是時間間隔的長
X是該時間間隔內的事件數。
其中,X稱為泊松隨機變量,X的概率分布稱為泊松分布。
令μ表示長度為t的間隔中的平均事件數。那么,μ = λ*t。
泊松分布的X由下式給出:
平均值μ是該分布的參數。 μ也定義為該間隔的λ倍長度。泊松分布圖如下所示:
下圖顯示了隨著平均值的增加曲線的偏移情況:
可以看出,隨著平均值的增加,曲線向右移動。
泊松分布中X的均值和方差:
均值 -> E(X) = μ方差 -> Var(X) = μ
指數分布
讓我們再一次看看呼叫中心的那個例子。不同呼叫之間的時間間隔是多少呢?在這里,指數分布模擬了呼叫之間的時間間隔。
其他類似的例子有:
1. 地鐵到達時間間隔
2. 到達加油站的時間
3. 空調的壽命
指數分布廣泛用于生存分析。從機器的預期壽命到人類的預期壽命,指數分布都能成功地提供結果。
具有**的指數分布**的隨機變量X:
f(x) = { λe-λx, x ≥ 0
參數 λ>0 也稱為速率。
對于生存分析,λ被稱為任何時刻t的設備的故障率,假定它已經存活到t時刻。
遵循指數分布的隨機變量X的均值和方差為:
平均值 -> E(X) = 1/λ
方差 -> Var(X) = (1/λ)2
此外,速率越大,曲線下降越快,速率越慢,曲線越平坦。下面的圖很好地解釋了這一點。
為了簡化計算,下面給出一些公式。
P{X≤x} = 1 – e-λx 對應于x左側曲線下的面積。
PP{X>x} = e-λx 對應于x右側曲線下的面積。
P{x1-λx1 – e-λx2, corresponds to the area under the density curve between x1 and x2.
P{x1-λx1 – e-λx2 對應于x1和x2之間地曲線下的面積。
04 各種分布之間的關系
伯努利與二項分布之間的關系
1.伯努利分布是具有單項試驗的二項式分布的特殊情況。2. 伯努利分布和二項式分布只有兩種可能的結果,即成功與失敗。3. 伯努利分布和
二項式分布都具有獨立的軌跡。
泊松與二項式分布之間的關系
泊松分布在滿足以下條件的情況下是二項式分布的極限情況:
1. 試驗次數無限大或n → ∞。
2. 每個試驗成功的概率是相同的,無限小的,或p → 0。
3. np = λ,是有限的。
正態分布關系
正態分布是在滿足以下條件的情況下二項分布的另一種限制形式:
1. 試驗次數無限大,n → ∞。
2. p和q都不是無限小。
正態分布也是參數λ → ∞的泊松分布的極限情況。
指數和泊松分布之間的關系
如果隨機事件之間的時間遵循速率為λ的指數分布,則時間長度t內的事件總數遵循具有參數λt的泊松分布。
05 結束語
概率分布在許多領域都很常見,包括保險、物理、工程、計算機科學甚至社會科學,如心理學和醫學。它易于應用,并應用很廣泛。本文重點介紹了日常生活中經常能遇到的六個重要分布,并解釋了它們的應用。現在,你已經能夠識別、關聯和區分這些分布了。
-
數據
+關注
關注
8文章
7134瀏覽量
89402 -
概率
+關注
關注
0文章
17瀏覽量
13036
原文標題:每個數據科學專家都應該知道的六個概率分布
文章出處:【微信號:tyutcsplab,微信公眾號:智能感知與物聯網技術研究所】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論