2018年3月9日,由智東西聯合極果、AWE舉辦的GTIC 2018全球AI芯片創(chuàng)新峰會在上海舉辦。本次峰會以“走進AI世界,從芯看未來”為主題,匯集了清華大學微電子所所長魏少軍、NVIDIA亞太區(qū)AI技術中心首席技術官Simon See、聯發(fā)科技副總經理暨家庭娛樂產品事業(yè)群總經理游人杰以及深鑒科技聯合創(chuàng)始人兼CEO姚頌、啟英泰倫創(chuàng)始人&董事長何云鵬等眾多行業(yè)人士,共談AI芯片的最新技術動向及產業(yè)落地前景。
會上, 清華大學微電子所所長魏少軍呼吁,當前,AI領域芯片已“炒作”過熱,在目前還沒有出現AI通用算法的芯片,以及,AI殺手級應用尚未出現的情況下,AI芯片未來發(fā)展還有長路要走。而推進AI芯片需要軟件、硬件“雙輪驅動發(fā)展”,其中,軟件更是扮演核心的關鍵角色。
人工智能是一個老的新話題
我們看到,近年來,在人工智能領域有兩件事情,刺激了人們的神經。
首先是在去年,谷歌的alphago和兩位世界級圍棋選手分別進行了對弈,而alphago都取得了勝利。對于這件事情,很多人都認為這件事情代表了人工智能取得了重大的進步。
但是,魏少軍教授對于這件事情并沒有抱著過于悲觀的態(tài)度。他認為,從alphago與人類對弈的初衷目的來說,并沒有達到最初目標。最開始谷歌的目標是alphago在沒有經過人工干預的情況下獲得最終的勝利,從而證明機器做能夠自我學習,戰(zhàn)勝人類。但是最終的結果顯示,這兩場比賽,都有人工干預的成分在其中,alphago才取得了最終的勝利。
第二件事情就是在2011年,IBM舉行了一場名叫《危險邊緣》的比賽,這場比賽更能夠反映人工智能作用。雖然比賽中計算機的體積不大,但是它的人工智能程度遠遠高于alphago。“與這類機器相比較而言,alphago只能算是專門用于下圍棋的機器。”魏少軍教授表示。
但是,盡管如此,魏少軍教授認為人工智能依舊是一個老的新話題。
芯片是實現人工智能的當然載體
魏少軍他指出,當前人工智能算法非常多,層出不窮并沒有統(tǒng)一,根據應用不同,因應算法也不同;從硬件芯片來說,需要具備AI深度學習引擎,從云端向終端遷移的過程,需要極高效能通用深度學習引擎。
那么人工智能芯片是什么呢?
從目前主要的幾個機器學習芯片平臺來看。
首先是GPU。目前GPU的計算能力要比CPU高很多倍。從全部圖形芯片市場來看。英特爾目前占了71%,英偉達占了16%,AMD占了13%。但是從分立式GPU市場來看,英偉達占了71%,AMD占了29%。所以英偉達在分立式GPU市場產品中占有絕對的優(yōu)勢,其產品廣泛應用于數據中心的人工智能訓練。
此外,人工智能芯片的第二個發(fā)展方向就是FPGA和TPU。
FPGA所實現的人工智能芯片,能夠在相同的情況下,功耗下降到GPU環(huán)境的20%。但是這依舊很難在移動設備上使用。
而TPU的問題在于精度不高。所以TPU主要適用于不需要極高精度的機器學習相關計算。與GPU相比,TPU旨在以較低的精度來提高性能,功耗下降到GPU環(huán)境的10%左右。
芯片是實現AI實現智能的當然載體,“無芯片,不AI”。這也使得如今的芯片行業(yè)進入到一個高爆發(fā)和強競爭的階段,例如英偉達在分立式GPU產品上占有優(yōu)勢,產品廣泛應用于數據中心的人工智能訓練;AMD能夠提供異構GPU/CPU(即APU),以及集成或分立的GPU;同時還有深鑒科技、寒武紀科技等國內創(chuàng)業(yè)公司在細分行業(yè)領域的深耕。
構成智能芯片的關鍵要素
從人工智能芯片的架構來看,前端有很多的傳感器,后端則是很多的執(zhí)行器,而連接著兩個部分的,絕不僅僅只是單一的芯片,而需要很多的功能。
在此基礎上,我們總結出了,人腦的的相關的工作結構,其中包括:多輸入/多輸出系統(tǒng);高度復雜的互連結構;多任務且高度并行化運行系統(tǒng);多處理器單元系統(tǒng);并行分布式存儲;并行分布式軟件;分布式處理與集中控制系統(tǒng)。
綜上所述,構成智能芯片的關鍵要素到底有哪些呢?在魏少軍教授看來,主要包含一下部分:
一. 可編程性:適應算法的演進和應用的多樣性;
二. 架構的動態(tài)可變性:適應不同的算法,實現高效計算;
三. 高效的架構變換能力:< 10 Clock cycle, 降低開銷;
四. 高計算效率:避免使用指令這類低效率的架構。
五. 高能量效率:~5TOps/W
某些應用:功耗 < 1mW
某些應用:識別速度 > 25f/s
六. 低成本:能夠進入家電和消費類電子;
七. 體積小:能夠裝載在移動設備上;
八. 應用開發(fā)簡便:不需要芯片設計方面的知識;
但是,魏少軍教授認為,目前的CPU、CPU+GPU、CPU+FPGA、CPU+ASIC的作法均不是理想的架構。
AI殺手級應用還沒出現
魏少軍教授認為,現在AI芯片已經被過度“炒作”, 尤其媒體跟風起到很大作用。實際上,目前還沒有出現像CPU一樣的AI通用算法芯片,AI殺手級應用還沒出現,未來還有很長一段路要走。
在應用方面,“無行業(yè)不AI”,無論是人臉識別,語音識別、機器翻譯、監(jiān)控、交通規(guī)劃、無人駕駛、智能陪伴、輿情監(jiān)控、智慧農業(yè)等等,似乎AI涵蓋了人們生產生活中的方方面面。然而,哪些應用真的需要AI?我們希望AI幫助解決什么樣的問題?什么是AI的“殺手級”應用?什么樣的AI應用是我們每天都需要的?這些問題到今天仍舊沒有解決。
AI應用落地還有很長的路要走,而對于從業(yè)者來講,當務之急是研究芯片架構問題。從感知、傳輸到處理,再到傳輸、執(zhí)行,這是AI芯片的一個基本邏輯。但是智慧處理的基本架構是什么?還沒有人能夠說得清,研究者只能利用軟件系統(tǒng)、處理器等去模仿人類。軟件是實現智能的核心,芯片是支撐智能的基礎。
總結
魏少軍在演講最后總結出如下五點思考:
1、AI芯片是當前科技、產業(yè)和社會關注的熱點,也是AI技術發(fā)展過程中不可逾越的關鍵階段,不管有什么AI算法,要想最終得到應用,就必然要通過芯片來實現。
2、由于還不存在適應所以應用的“通用”算法,確定應用領域就成為發(fā)展AI芯片的重要前提。遺憾的是,AI的“殺手”級應用目前尚未出現,已經存在的一些應用對于老百姓的日常生活來說也還不是剛需,因此,AI芯片的外部發(fā)展還有待優(yōu)化。
3、架構創(chuàng)新是AI芯片面臨的一個不可回避的課題。一個重要問題:是否會出現像通用CPU那樣獨立存在的AI處理器?如果存在的話,它的架構是怎樣的?如果不存在,那么目前以滿足特定應用為主要目標的AI芯片就一定只能以IP核的方式存在,最終被各種各樣的SoC所集成。如果真是這樣,那么今天從事AI芯片研究的設計公司該何去何從?
4、可重構計算芯片技術允許硬件架構和功能隨軟件變化而變化,實現軟件定義芯片,在實現AI功能時具有獨到的優(yōu)勢,具備廣闊的前景。
5、目前大部分的AI芯片創(chuàng)業(yè)者都會成為“先烈”,而這將成為AI發(fā)展中最令人欽佩也最令人動容的偉大事件.
-
人工智能
+關注
關注
1792文章
47445瀏覽量
239060 -
AI芯片
+關注
關注
17文章
1894瀏覽量
35107
原文標題:魏少軍:大部分AI芯片企業(yè)都會成為“先烈”
文章出處:【微信號:MooreNEWS,微信公眾號:摩爾芯聞】歡迎添加關注!文章轉載請注明出處。
發(fā)布評論請先 登錄
相關推薦
評論