色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

分布式通信的原理和實現(xiàn)高效分布式通信背后的技術NVLink的演進

路科驗證 ? 來源:路科驗證 ? 2024-11-18 09:39 ? 次閱讀

在進入大模型時代后,大模型發(fā)展已是人工智能的核心,但訓練大模型實際上是一項比較復雜的工作,因為它需要大量的 GPU 資源和較長的訓練時間。

此外,由于單個 GPU 工作線程的內(nèi)存有限,并且許多大型模型的大小已經(jīng)超出了單個 GPU 的范圍。所以就需要實現(xiàn)跨多個 GPU 的模型訓練,這種訓練方式就涉及到了分布式通信和 NVLink。

當談及分布式通信和 NVLink 時,我們進入了一個引人入勝且不斷演進的技術領域,下面我們將簡單介紹分布式通信的原理和實現(xiàn)高效分布式通信背后的技術 NVLink 的演進。

分布式通信是指將計算機系統(tǒng)中的多個節(jié)點連接起來,使它們能夠相互通信和協(xié)作,以完成共同的任務。而 NVLink 則是一種高速、低延遲的通信技術,通常用于連接 GPU 之間或連接 GPU 與其他設備之間,以實現(xiàn)高性能計算和數(shù)據(jù)傳輸。

分布式并行

當前深度學習進入了大模型時代,即 Foundation Models。大模型,顧名思義主打的就是“大”。主要包括以下幾個方面:

數(shù)據(jù)規(guī)模大,大模型通常采用自監(jiān)督學習方法,減少了數(shù)據(jù)標注,降低訓練研發(fā)成本,而大量的數(shù)據(jù)又可以提高模型的泛化能力和性能。

參數(shù)規(guī)模大,隨著模型參數(shù)規(guī)模的不斷增大,模型可以更好地捕捉數(shù)據(jù)中的復雜關系和模式,有望進 一步突破現(xiàn)有模型結(jié)構(gòu)的精度局限。

算力需求大,大規(guī)模的數(shù)據(jù)和參數(shù),使得模型無法在單機上運行和計算,這一方面要求計算硬件的不斷進步,另一方面也要求 AI 框架具有分布式并行訓練的能力。

所以說,為了解決上述問題我們需要引入分布式并行策略。

數(shù)據(jù)并行

數(shù)據(jù)并行(Data Parallel, DP)是一種常用的深度學習訓練策略,它通過在多個 GPU 上分布數(shù)據(jù)來實現(xiàn)并行處理。在數(shù)據(jù)并行的框架下,每個 GPU(或稱作工作單元)都會存儲模型的完整副本,這樣每個 GPU 都能獨立地對其分配的數(shù)據(jù)子集進行前向和反向傳播計算。

數(shù)據(jù)并行的工作流程:

參數(shù)同步:在開始訓練之前,所有的工作單元同步模型參數(shù),確保每個 GPU 的模型副本是相同的。

分配數(shù)據(jù):訓練數(shù)據(jù)被劃分為多個批次,每個批次進一步被分割成多個子集,每個 GPU 負責處理一個數(shù)據(jù)子集。

獨立計算梯度:每個 GPU 獨立地對其數(shù)據(jù)子集進行前向傳播和反向傳播,計算出相應的梯度。

梯度聚合:計算完成后,所有工作單元的梯度需要被聚合起來。這通常通過網(wǎng)絡通信來實現(xiàn),比如使用 All-Reduce 算法,它允許在不同的 GPU 間高效地計算梯度的平均值。

更新參數(shù):一旦梯度被平均,每個 GPU 使用這個平均梯度來更新其模型副本的參數(shù)。

重復過程:這個過程在每個數(shù)據(jù)批次上重復進行,直到模型在整個數(shù)據(jù)集上訓練完成。

數(shù)據(jù)并行的優(yōu)勢和挑戰(zhàn):

數(shù)據(jù)并行可以允許訓練過程水平擴展到更多的 GPU 上,從而加速訓練。其優(yōu)勢是實現(xiàn)簡單,而且可以靈活的調(diào)整工作單元的數(shù)量來適應可用的硬件資源,當前多種深度學習框架提供了內(nèi)置支持。

不過數(shù)據(jù)并行隨著并行的 GPU 數(shù)量增加,需要存儲更多的參數(shù)副本,這會導致顯著的內(nèi)存開銷。此外,梯度聚合步驟需要在 GPU 之間同步大量數(shù)據(jù),這可能成為系統(tǒng)的瓶頸,特別是當工作單元的數(shù)量增多時。

異步同步方案在數(shù)據(jù)并行中的應用:

為了解決數(shù)據(jù)并行中的通信瓶頸問題,研究者們提出了各種異步同步方案。在這些方案中,每個 GPU 工作線程可以獨立于其他線程處理數(shù)據(jù),無需等待其他工作線程完成其梯度計算和同步。這種方法可以顯著降低因通信導致的停滯時間,從而提高系統(tǒng)的吞吐量。

其實現(xiàn)原理為,在梯度計算階段,每個 GPU 在完成自己的前向和反向傳播后,不等待其他 GPU,立即進行梯度更新。其次,每個 GPU 在需要時讀取最新可用的全局權重,而不必等待所有 GPU 達到同步點。

然而,這種方法也有其缺點。由于不同 GPU 上的模型權重可能不同步,工作線程可能會使用過時的權重進行梯度計算,這可能導致統(tǒng)計效率的降低,即精度上無法嚴格保證。

模型并行

模型并行(Model Parallel, MP)通常是指在多個計算節(jié)點上分布式地訓練一個大型的深度學習模型,其中每個節(jié)點負責模型的一部分。這種方法主要用于解決單個計算節(jié)點無法容納整個模型的情況。模型并行可以進一步細分為幾種策略,包括但不限于流水并行(Pipeline Parallel, PP)和張量并行(Tensor Parallel, TP)。

模型并行是一種解決單個計算節(jié)點無法容納模型所有參數(shù)的方法。不同于數(shù)據(jù)并行,其中每個節(jié)點處理完整模型的不同數(shù)據(jù)子集,模型并行將模型的不同部分分布到多個節(jié)點上,每個節(jié)點只負責模型的一部分參數(shù)。這樣可以有效降低單個節(jié)點的內(nèi)存需求和計算負載。

在模型并行中,深度神經(jīng)網(wǎng)絡的多個層可以被分割并分配給不同的節(jié)點。例如,我們可以將連續(xù)的幾層分為一組,然后將這組層分配給一個節(jié)點。這種分層策略使得每個節(jié)點只處理分配給它的一部分模型參數(shù),減少了內(nèi)存和計算資源的使用。

然而,簡單的模型并行實現(xiàn)可能會導致顯著的等待時間和計算資源的低效利用,因為具有順序依賴的層需要等待前一層的計算完成。

為了減少這種效率損失,流水并行(Pipeline Parallel, PP)被提出。在流水并行中,一個大的數(shù)據(jù)批次被分成多個小的微批次(micro-batches),每個微批次的處理速度應該成比例地更快,并且每個 Worker 一旦可用就開始處理下一個微批次,從而加快流水的執(zhí)行速度。如果有足夠的微批次,則可以充分利用 Worker(GPU 卡),并在步驟開始和結(jié)束時將空閑時間“氣泡”降至最低。

在流水并行中,每個節(jié)點按順序處理不同的模型層,微批次在節(jié)點間流動,就像在流水線上一樣。梯度在所有微批次處理完畢后被平均,然后更新模型參數(shù)。

流水并行性按層“垂直”分割模型。我們還可以“水平”分割層內(nèi)的某些操作,這通常稱為張量并行訓練(Tensor Parallel, TP)來進一步提高效率。

在張量并行中,模型中的大型矩陣乘法操作被分割成更小的部分,這些部分可以在多個計算節(jié)點上并行執(zhí)行。例如,在 Transformer 模型中,矩陣乘法是一個主要的計算瓶頸,通過張量并行,我們可以將權重矩陣分割成更小的塊,每個塊在不同的節(jié)點上并行處理。

在實踐中,模型并行可以包括流水并行和張量并行的組合。一個節(jié)點可以負責模型的一部分(模型并行),同時處理不同的微批次(流水并行),并且在這個節(jié)點內(nèi)部,大型的矩陣運算可以進一步在多個處理器間分割(張量并行)。這樣的組合可以充分利用分布式計算資源,提高大規(guī)模模型訓練的效率。

AI 框架分布式

對于模型訓練來說,不管是哪一種并行策略其本質(zhì)上包括將模型進行“縱向”或“橫向”的切分,然后將單獨切分出來的放在不同的機器上進行計算,來充分的利用計算資源。

在現(xiàn)在的 AI 框架中,通常都是采取的多種策略的混合并行來加速模型訓練的。而要支持這種多種并行策略的訓練模型,就需要涉及不同“切分”的模型部分如何通信。

5ae4f6f0-907f-11ef-a511-92fbcf53809c.png

AI 訓練圖切分

如上圖所示,在 AI 計算框架中,我們需要將原來的一個網(wǎng)絡模型進行切分,將其分布在不同的機器上進行計算,這里通過在模型中插入 Send 和 Recv 節(jié)點來進行通信。

除此以外,在分布式的模型訓練中,由于模型的切分我們也需要將模型參數(shù)放在不同模型部分所在的機器上,在訓練過程中我們會涉及到不同模型節(jié)點參數(shù)的交互和同步,那也需要跨節(jié)點的同步數(shù)據(jù)和參數(shù),這種就是分布式訓練。

以上我們介紹的都是軟件層面的分布式策略和算法,接下來我們來看下通訊的硬件上是如何實現(xiàn)的。

通訊硬件

在 AI 訓練中,分布式通信是至關重要的,特別是在處理大型模型和海量數(shù)據(jù)時。分布式通信涉及不同設備或節(jié)點之間的數(shù)據(jù)傳輸和協(xié)調(diào),以實現(xiàn)并行計算和模型參數(shù)同步,如下圖所示。

5af21ae2-907f-11ef-a511-92fbcf53809c.png

GPU 服務結(jié)構(gòu)

在機器內(nèi)通信方面,有幾種常見的硬件:

共享內(nèi)存:多個處理器或線程可以訪問相同的物理內(nèi)存,這樣它們可以通過讀寫內(nèi)存中的數(shù)據(jù)來進行通信。共享內(nèi)存適用于在同一臺機器上進行并行計算的情況。

PCIe(Peripheral Component Interconnect Express):PCIe 總線是連接計算設備的一種標準接口,通常用于連接 GPU、加速器卡或其他外部設備。通過 PCIe 總線,數(shù)據(jù)可以在不同的計算設備之間傳輸,以實現(xiàn)分布式計算。

NVLink:NVLink 是一種由 NVIDIA 開發(fā)的高速互連技術,可實現(xiàn) GPU 之間的直接通信。NVLink 可以提供比 PCIe 更高的帶寬和更低的延遲,適用于要求更高通信性能的任務。

在機器間通信方面,常見的硬件包括:

TCP/IP 網(wǎng)絡:TCP/IP 協(xié)議是互聯(lián)網(wǎng)通信的基礎,它允許不同機器之間通過網(wǎng)絡進行數(shù)據(jù)傳輸。在分布式計算中,可以使用 TCP/IP 網(wǎng)絡進行機器間的通信和數(shù)據(jù)傳輸。

RDMA(Remote Direct Memory Access)網(wǎng)絡:RDMA 是一種高性能網(wǎng)絡通信技術,它允許在不涉及 CPU 的情況下直接從一個內(nèi)存區(qū)域傳輸數(shù)據(jù)到另一個內(nèi)存區(qū)域。RDMA 網(wǎng)絡通常用于構(gòu)建高性能計算集群,提供低延遲和高吞吐量的數(shù)據(jù)傳輸。

在了解在硬件之后,實現(xiàn)通信不可或缺的是提供集合通信功能的庫。其中,最常用的集合通信庫之一是 MPI(Message Passing Interface),在 CPU 上被廣泛應用。而在 NVIDIA GPU 上,最常用的集合通信庫則是 NCCL(NVIDIA Collective Communications Library)。

5b1c6c0c-907f-11ef-a511-92fbcf53809c.png

NVLink&NVSwitch

如上圖所示,通過 NCCL 庫,我們可以利用 NVLink 或 NVSwitch 將不同的 GPU 相互連接起來。NCCL 在算法層面提供了外部 API,通過這些 API,我們可以方便地進行跨多個 GPU 的集合通信操作。NCCL 的 API 覆蓋了常見的集合通信操作,如廣播、歸約、全局歸約、全局同步等,為開發(fā)者提供了豐富而高效的并行計算工具。

集合通信

集合通信(Collective Communications)是一種涉及進程組中所有進程的全局通信操作。它包括一系列基本操作,如發(fā)送(send)、接收(receive)、復制(copy)、組內(nèi)進程柵欄同步(Barrier),以及節(jié)點間進程同步(signal + wait)。這些基本操作經(jīng)過組合可以構(gòu)成一組通信模板,也稱為通信原語。例如,1 對多的廣播(broadcast)、多對 1 的收集(gather)、多對多的收集(all-gather)、1 對多的發(fā)散(scatter)、多對 1 的規(guī)約(reduce)、多對多的規(guī)約(all-reduce)、組合的規(guī)約與發(fā)散(reduce-scatter)、多對多的全互連(all-to-all)等。下面我們簡單介紹幾個。

5b346d84-907f-11ef-a511-92fbcf53809c.png

集合通信

Gather 操作屬于多對 1 的通信原語,具有多個數(shù)據(jù)發(fā)送者,一個數(shù)據(jù)接收者,可以在集群內(nèi)把多個節(jié)點的數(shù)據(jù)收集到一個節(jié)點上,他的反向操作對應 Scatter。

Broadcast 屬于 1 對多的通信原語,一個數(shù)據(jù)發(fā)送者,多個數(shù)據(jù)接收者,可以在集群內(nèi)把一個節(jié)點自身的數(shù)據(jù)廣播到其他節(jié)點上。如上圖所示,當主節(jié)點 0 執(zhí)行 Broadcast 時,數(shù)據(jù)即從主節(jié)點 0 被廣播至其他節(jié)點。

Scatter 是數(shù)據(jù)的 1 對多的分發(fā),它將一張 GPU 卡上的數(shù)據(jù)進行分片再分發(fā)到其他所有的 GPU 卡上。

AllReduce 屬于多對多的通信原語,具有多個數(shù)據(jù)發(fā)送者,多個數(shù)據(jù)接收者,其在集群內(nèi)的所有節(jié)點上都執(zhí)行相同的 Reduce 操作,可以將集群內(nèi)所有節(jié)點的數(shù)據(jù)規(guī)約運算得到的結(jié)果發(fā)送到所有的節(jié)點上。簡單來說,AllReduce 是數(shù)據(jù)的多對多的規(guī)約運算,它將所有的 GPU 卡上的數(shù)據(jù)規(guī)約(比如 SUM 求和)到集群內(nèi)每張 GPU 卡上。

AllGather 屬于多對多的通信原語,具有多個數(shù)據(jù)發(fā)送者,多個數(shù)據(jù)接收者,可以在集群內(nèi)把多個節(jié)點的數(shù)據(jù)收集到一個主節(jié)點上(Gather),再把這個收集到的數(shù)據(jù)分發(fā)到其他節(jié)點上。

AllToAll 操作每一個節(jié)點的數(shù)據(jù)會 Scatter 到集群內(nèi)所有節(jié)點上,同時每一個節(jié)點也會 Gather 集群內(nèi)所有節(jié)點的數(shù)據(jù)。AllToAll 是對 AllGather 的擴展,區(qū)別是 AllGather 操作中,不同節(jié)點向某一節(jié)點收集到的數(shù)據(jù)是相同的,而在 AllToAll 中,不同的節(jié)點向某一節(jié)點收集到的數(shù)據(jù)是不同的。

NVLlink 與 NVSwitch 發(fā)展

NVLink 和 NVSwitch 是英偉達推出的兩項革命性技術,它們正在重新定義 CPU 與 GPU 以及 GPU 與 GPU 之間的協(xié)同工作和高效通信的方式。

NVLink 是一種先進的總線及其通信協(xié)議。NVLink 采用點對點結(jié)構(gòu)、串列傳輸,用于中央處理器(CPU)與圖形處理器(GPU)之間的連接,也可用于多個圖形處理器(GPU)之間的相互連接。

NVSwitch:是一種高速互連技術,同時作為一塊獨立的 NVLink 芯片,其提供了高達 18 路 NVLink 的接口,可以在多個 GPU 之間實現(xiàn)高速數(shù)據(jù)傳輸。

這兩項技術的引入,為 GPU 集群和深度學習系統(tǒng)等應用場景帶來了更高的通信帶寬和更低的延遲,從而提升了系統(tǒng)的整體性能和效率。

NVLink 發(fā)展

5b3e30d0-907f-11ef-a511-92fbcf53809c.png

NVLink 發(fā)展

如上圖所示,從 Pascal 架構(gòu)到 Hoppe 架構(gòu),NVLink 已經(jīng)經(jīng)過了四代的發(fā)展演進。在 2024 年的 GTC 大會上,NVIDIA 發(fā)布了 Blackwell 架構(gòu),其中 NVLink 再次更新,發(fā)布了第五代 NVLink,其中互聯(lián)帶寬達到了 1800GB/s。

如上圖所示,每一層 NVLink 的更新,其每個 GPU 的互聯(lián)帶寬都是在不斷的提升,其中 NVLink 之間能夠互聯(lián)的 GPU 數(shù),也從第一代的 4 路到第四代的 18 路。最新的 Blackwell 架構(gòu)其最大互聯(lián) GPU 數(shù),并未增加。

5b421d94-907f-11ef-a511-92fbcf53809c.png

NVLink 發(fā)展

從上圖可以看出,在 P100 中每一個 NVLink 只有 40GB/s,而從第二代 V100 到 H100 每一個 NVLink 鏈路都有 50GB/s,通過增加了鏈路的數(shù)量使得整體帶寬增加。

NVSwitch 發(fā)展

5b5b688a-907f-11ef-a511-92fbcf53809c.png

NVSwitch 發(fā)展

如上圖所示,NVSwitch 技術從 Volta 架構(gòu)到 Hopper 架構(gòu),經(jīng)歷了三代的演進與發(fā)展。在每一代中,每個 GPU 互聯(lián)的芯片模組數(shù)量保持不變,都為 8 個,這意味著互聯(lián)的基本結(jié)構(gòu)保持了穩(wěn)定性和一致性。隨著 NVLink 架構(gòu)的升級,GPU 到 GPU 之間的帶寬卻實現(xiàn)了顯著的增長,因為 NVSwitch 就是 NVLink 具體承載的芯片模組,從 Volta 架構(gòu)的 300GB/s 增加到了 Hopper 架構(gòu)的 900GB/s。

下面我們來看下 NVLink 與 NVSwitch 在服務器中的關系。

5b7f9890-907f-11ef-a511-92fbcf53809c.png

NVSwitch 發(fā)展

如上圖所示,在 P100 中是只有 NVLink 的,GPU 間通過 CubeMesh 進行互聯(lián)。在 P100 中,每一個 GPU 有 4 路進行互聯(lián),每 4 個組成一個 CubeMesh。

而到了 V100 中,每一個 GPU 可以通過 NVSwitch 合另外一個 GPU 進行互聯(lián)。到了 A100 中,NVSwitch 再次升級,節(jié)省了很多的鏈路,每一個 GPU 可以通過 NVSwitch 和任何一個 GPU 進行互聯(lián)。

到了 H100 中,又有了新的技術突破,單機內(nèi)有 8 塊 H100 GPU 卡,任意兩個 H100 卡之間都有 900 GB/s 的雙向互聯(lián)帶寬。值得注意的是,在 DGX H100 系統(tǒng)里,四個 NVSwitch 留出了 72 個 NVLink4 連接,用于通過 NVLink-Network Switch 連接到其他 DGX H100 系統(tǒng),從而方便組成 DGX H100 SuperPod 系統(tǒng)。其中,72 個 NVLink4 連接的總雙向帶寬是~3.6TB/s。

總結(jié)

在大模型時代,人工智能的發(fā)展越來越依賴于強大的計算資源,尤其是 GPU 資源。為了訓練這些龐大的模型,我們需要采用分布式并行策略,將模型訓練任務分散到多個 GPU 或計算節(jié)點上。這不僅涉及到數(shù)據(jù)并行和模型并行等策略,還需要高效的分布式通信技術,如 NVLink 和 NVSwitch,來保證數(shù)據(jù)在不同計算單元間的快速傳輸和同步。

大模型時代的 AI 框架不僅需要支持不同的分布式并行策略,還需要涉及和考慮到分布式通信技術,例如 NVLink 和 NVSwitch 來支持高效的跨節(jié)點通信。

未來隨著模型的規(guī)模將繼續(xù)增長,對計算資源的需求也將不斷上升。我們需要不斷優(yōu)化分布式并行策略,并發(fā)展更高效的分布式通信技術。這不僅僅是軟件上的策略優(yōu)化更新,也涉及到硬件層面的優(yōu)化更新。

NVLink 和 NVSwitch 不斷的更新,進一步提升深度學習模型訓練的速度和效率。通過了解這些通信技術創(chuàng)新和進步,可以幫助我們更好的訓練更大的模型,推動人工智能向更深層次的方向發(fā)展。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 通信
    +關注

    關注

    18

    文章

    6024

    瀏覽量

    135950
  • gpu
    gpu
    +關注

    關注

    28

    文章

    4729

    瀏覽量

    128890
  • AI
    AI
    +關注

    關注

    87

    文章

    30728

    瀏覽量

    268886

原文標題:淺析GPU分布式通信技術-PCle、NVLink、NVSwitch

文章出處:【微信號:Rocker-IC,微信公眾號:路科驗證】歡迎添加關注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關推薦

    分布式軟件系統(tǒng)

    分布式軟件系統(tǒng)分布式軟件系統(tǒng)(Distributed Software Systems)是支持分布式處理的軟件系統(tǒng),是在由通信網(wǎng)絡互聯(lián)的多處理機體系結(jié)構(gòu)上執(zhí)行任務的系統(tǒng)。它包括
    發(fā)表于 07-22 14:53

    分布式發(fā)電技術與微型電網(wǎng)

    幾種分布式發(fā)電簡介2.分布式發(fā)電與配電網(wǎng)互聯(lián)問題3.微型電網(wǎng)技術4.分布式發(fā)電(電源)技術應用的障礙和瓶頸5.
    發(fā)表于 03-11 13:37

    《無線通信FPGA設計》分布式FIR的并行改寫

    《無線通信FPGA設計》分布式FIR的并行改寫,結(jié)果與matlab仿真結(jié)果基本吻合
    發(fā)表于 02-26 09:09

    關于光載無線分布式天線的全面介紹

    系統(tǒng)中使用的光收發(fā)模塊。為了降低系統(tǒng)成本,我們基于商用的千兆以太網(wǎng)光組件,經(jīng)過電路設計和改進實現(xiàn)了低成本、寬帶的模擬光收發(fā)模塊,為光載無線分布式天線網(wǎng)絡的推廣應用打下了基礎。此外,光載無線(ROF)鏈路
    發(fā)表于 06-11 07:45

    如何設計分布式干擾系統(tǒng)?

    啟動,自主組網(wǎng),并根據(jù)控制對敵方雷達網(wǎng)、通信網(wǎng)、制導網(wǎng)和預警機等電子信息系統(tǒng)實施接近偵察和干擾,這將在未來的電子對抗中發(fā)揮重要作用。分布式干擾系統(tǒng)采用逼近的分布式網(wǎng)絡化結(jié)構(gòu),形成一種
    發(fā)表于 08-08 06:57

    分布式系統(tǒng)的優(yōu)勢是什么?

    當討論分布式系統(tǒng)時,我們面臨許多以下這些形容詞所描述的 同類型: 分布式的、刪絡的、并行的、并發(fā)的和分散的。分布式處理是一個相對較新的領域,所以還沒有‘致的定義。與順序計算相比、并行的、并發(fā)的和
    發(fā)表于 03-31 09:01

    HarmonyOS應用開發(fā)-分布式設計

    設計理念HarmonyOS 是面向未來全場景智慧生活方式的分布式操作系統(tǒng)。對消費者而言,HarmonyOS 將生活場景中的各類終端進行能力整合,形成“One Super Device”,以實現(xiàn)
    發(fā)表于 09-22 17:11

    如何基于分布式軟總線進行“三步走”極簡開發(fā)

    近場通信方式(藍牙,WiFi,UWB等)必須感知才能實現(xiàn)連接3.無線環(huán)境必須建立標準的用于服務器的協(xié)議棧4.不同物理層無法實現(xiàn)統(tǒng)一的開發(fā)體驗針對這些開發(fā)者的開發(fā)之痛,技術專家鄭凱帶來的
    發(fā)表于 12-24 10:43

    HDC2021技術分論壇:跨端分布式計算技術初探

    外部無關業(yè)務干擾,使得分布式計算穩(wěn)定性較低。三、如何應對跨端分布式計算技術面臨的挑戰(zhàn)你肯定會好奇,HarmonyOS如何應對挑戰(zhàn)、解決問題?在無線不可靠的網(wǎng)絡環(huán)境下,為實現(xiàn)靈活、
    發(fā)表于 11-15 14:54

    HDC2021技術分論壇:跨端分布式計算技術初探

    作者:zhengkai,分布式通信首席技術專家當今的移動應用都向著智能化和多樣化方向發(fā)展,例如AI輔助,VR/AR應用,沉浸游戲等。然而現(xiàn)實中的移動設備,因為便攜性要求受限于尺寸、電
    發(fā)表于 11-23 17:06

    如何高效完成HarmonyOS分布式應用測試?

    分布式應用涉及多臺設備協(xié)同時,由于缺乏全面且高效的隱私合規(guī)檢測方案,安全隱私問題攔截難度較大。鑒于以上HarmonyOS分布式應用測試面臨的挑戰(zhàn),華為DevEco Testing提供了一套
    發(fā)表于 12-13 18:07

    分布式軟總線實現(xiàn)近場設備間統(tǒng)一的分布式通信管理能力如何?

    現(xiàn)實中多設備間通信方式多種多樣(WIFI、藍牙等),不同的通信方式使用差異大,導致通信問題多;同時還面臨設備間通信鏈路的融合共享和沖突無法處理等挑戰(zhàn)。那么
    發(fā)表于 03-16 11:03

    常見的分布式供電技術有哪些?

    燃料電池將氫氣轉(zhuǎn)化為電能,具有高效率、清潔環(huán)保等優(yōu)勢,能夠提供高品質(zhì)、高可靠性的電力供應?! ?.燃氣發(fā)電技術:利用燃氣機等設備將燃氣轉(zhuǎn)化為電能,接入分布式電網(wǎng)進行供電,其優(yōu)點是反應速度快,且燃料相對便宜,但同時還需要考慮燃氣供
    發(fā)表于 04-10 16:28

    分布式軟總線實現(xiàn)設備無感發(fā)現(xiàn)和高效傳輸

    分布式軟總線是OpenHarmony社區(qū)開源的分布式設備通信基座,為設備之間的互通互聯(lián)提供統(tǒng)一的分布式協(xié)同能力,實現(xiàn)設備無感發(fā)現(xiàn)和
    發(fā)表于 07-23 16:04 ?4081次閱讀

    分布式通信是什么 分布式網(wǎng)絡搭建

    智能機器人的功能繁多,全都放在一個計算機里,經(jīng)常會遇到計算能力不夠、處理出現(xiàn)卡頓等情況,如果可以將這些任務拆解,分配到多個計算機中運行豈不是可以減輕壓力? 這就是分布式系統(tǒng),可以實現(xiàn)多計算平臺
    的頭像 發(fā)表于 11-27 15:49 ?794次閱讀
    <b class='flag-5'>分布式</b><b class='flag-5'>通信</b>是什么 <b class='flag-5'>分布式</b>網(wǎng)絡搭建
    主站蜘蛛池模板: 美国兽皇zoo在线播放| 欧美一区二区视频高清专区| 全黄h全肉短篇禁乱np| 97在线观看免费| 欧美一区二区三区不卡免费| 超碰公开在线caopon| 午夜国产大片免费观看| 黄色三级视频在线| 91精品国产免费入口| 青青青手机视频| 国产婷婷综合在线视频中文| 在镜头里被CAO翻了H| 日本久久黄色| 九九久久久| 成人性生交片无码免费看| 亚洲va久久久久| 男人扒开添女人屁股| 囯产少妇BBBBBB高潮喷水一| 亚洲中文字幕AV在天堂| 热久久伊大人香蕉网老师| 国内精品自线在拍2020不卡| 99国产精品综合AV无码| 午夜免费无码福利视频麻豆| 美女被撕开胸罩狂揉大乳| 国产精品成人影院| 99久久精品国产自免费| 亚洲AV无码乱码A片无码蜜桃 | 深爱激情站| 久久欧洲视频| 国产精品免费视频播放| 99久久久免费精品免费| 亚洲欧美免费无码专区| 日本午夜视频在线| 久热人人综合人人九九精品视频| 古风一女N男到处做高H| 999av视频| 夜色福利院在线观看免费| 双性h浪荡受bl| 欧美精品专区免费观看| 久久久GOGO无码啪啪艺术| 国产婷婷色综合AV蜜臀AV|