來(lái)自:naughty 的博客
https://my.oschina.net/taogang/blog/1544709
每當(dāng)提到機(jī)器學(xué)習(xí),大家總是被其中的各種各樣的算法和方法搞暈,覺(jué)得無(wú)從下手。確實(shí),機(jī)器學(xué)習(xí)的各種套路確實(shí)不少,但是如果掌握了正確的路徑和方法,其實(shí)還是有跡可循的,這里我推薦SAS的Li Hui的這篇博客,講述了如何選擇機(jī)器學(xué)習(xí)的各種方法。
另外,Scikit-learn 也提供了一幅清晰的路線圖給大家選擇:
其實(shí)機(jī)器學(xué)習(xí)的基本算法都很簡(jiǎn)單,下面我們就利用二維數(shù)據(jù)和交互圖形來(lái)看看機(jī)器學(xué)習(xí)中的一些基本算法以及它們的原理。(另外向Bret Victor致敬,他的 Inventing on principle 深深的影響了我)
所有的代碼即演示可以在我的Codepen的這個(gè)Collection中找到。
首先,機(jī)器學(xué)習(xí)最大的分支的監(jiān)督學(xué)習(xí)和無(wú)監(jiān)督學(xué)習(xí),簡(jiǎn)單說(shuō)數(shù)據(jù)已經(jīng)打好標(biāo)簽的是監(jiān)督學(xué)習(xí),而數(shù)據(jù)沒(méi)有標(biāo)簽的是無(wú)監(jiān)督學(xué)習(xí)。從大的分類上看,降維和聚類被劃在無(wú)監(jiān)督學(xué)習(xí),回歸和分類屬于監(jiān)督學(xué)習(xí)。
無(wú)監(jiān)督學(xué)習(xí)
如果你的數(shù)據(jù)都沒(méi)有標(biāo)簽,你可以選擇花錢(qián)請(qǐng)人來(lái)標(biāo)注你的數(shù)據(jù),或者使用無(wú)監(jiān)督學(xué)習(xí)的方法
首先你可以考慮是否要對(duì)數(shù)據(jù)進(jìn)行降維。
降維
降維顧名思義就是把高維度的數(shù)據(jù)變成為低維度。常見(jiàn)的降維方法有PCA, LDA, SVD等。
主成分分析 PCA
降維里最經(jīng)典的方法是主成分分析PCA,也就是找到數(shù)據(jù)的主要組成成分,拋棄掉不重要的成分。
這里我們先用鼠標(biāo)隨機(jī)生成8個(gè)數(shù)據(jù)點(diǎn),然后繪制出表示主成分的白色直線。這根線就是二維數(shù)據(jù)降維后的主成分,藍(lán)色的直線是數(shù)據(jù)點(diǎn)在新的主成分維度上的投影線,也就是垂線。主成分分析的數(shù)學(xué)意義可以看成是找到這根白色直線,使得投影的藍(lán)色線段的長(zhǎng)度的和為最小值。
聚類
因?yàn)樵诜潜O(jiān)督學(xué)習(xí)的環(huán)境下,數(shù)據(jù)沒(méi)有標(biāo)簽,那么能對(duì)數(shù)據(jù)所做的最好的分析除了降維,就是把具有相同特質(zhì)的數(shù)據(jù)歸并在一起,也就是聚類。
層級(jí)聚類 Hierachical Cluster
該聚類方法用于構(gòu)建一個(gè)擁有層次結(jié)構(gòu)的聚類
如上圖所示,層級(jí)聚類的算法非常的簡(jiǎn)單:
1、初始時(shí)刻,所有點(diǎn)都自己是一個(gè)聚類
2、找到距離最近的兩個(gè)聚類(剛開(kāi)始也就是兩個(gè)點(diǎn)),形成一個(gè)聚類
3、兩個(gè)聚類的距離指的是聚類中最近的兩個(gè)點(diǎn)之間的距離
4、重復(fù)第二步,直到所有的點(diǎn)都被聚集到聚類中。
KMeans
KMeans中文翻譯K均值算法,是最常見(jiàn)的聚類算法。
1、隨機(jī)在圖中取K(這里K=3)個(gè)中心種子點(diǎn)。
2、然后對(duì)圖中的所有點(diǎn)求到這K個(gè)中心種子點(diǎn)的距離,假如點(diǎn)P離中心點(diǎn)S最近,那么P屬于S點(diǎn)的聚類。
3、接下來(lái),我們要移動(dòng)中心點(diǎn)到屬于他的“聚類”的中心。
4、然后重復(fù)第2)和第3)步,直到,中心點(diǎn)沒(méi)有移動(dòng),那么算法收斂,找到所有的聚類。
KMeans算法有幾個(gè)問(wèn)題:
1、如何決定K值,在上圖的例子中,我知道要分三個(gè)聚類,所以選擇K等于3,然而在實(shí)際的應(yīng)用中,往往并不知道應(yīng)該分成幾個(gè)類
2、由于中心點(diǎn)的初始位置是隨機(jī)的,有可能并不能正確分類,大家可以在我的Codepen中嘗試不同的數(shù)據(jù)
3、如下圖,如果數(shù)據(jù)的分布在空間上有特殊性,KMeans算法并不能有效的分類。中間的點(diǎn)被分別歸到了橙色和藍(lán)色,其實(shí)都應(yīng)該是藍(lán)色。
DBSCAN
DBSCAN(Density-Based Spatial Clustering of Applications with Noise)中文是基于密度的聚類算法。
DBSCAN算法基于一個(gè)事實(shí):一個(gè)聚類可以由其中的任何核心對(duì)象唯一確定。
算法的具體聚類過(guò)程如下:
1、掃描整個(gè)數(shù)據(jù)集,找到任意一個(gè)核心點(diǎn),對(duì)該核心點(diǎn)進(jìn)行擴(kuò)充。擴(kuò)充的方法是尋找從該核心點(diǎn)出發(fā)的所有密度相連的數(shù)據(jù)點(diǎn)(注意是密度相連)。
2、遍歷該核心點(diǎn)的鄰域內(nèi)的所有核心點(diǎn)(因?yàn)檫吔琰c(diǎn)是無(wú)法擴(kuò)充的),尋找與這些數(shù)據(jù)點(diǎn)密度相連的點(diǎn),直到?jīng)]有可以擴(kuò)充的數(shù)據(jù)點(diǎn)為止。最后聚類成的簇的邊界節(jié)點(diǎn)都是非核心數(shù)據(jù)點(diǎn)。
3、之后就是重新掃描數(shù)據(jù)集(不包括之前尋找到的簇中的任何數(shù)據(jù)點(diǎn)),尋找沒(méi)有被聚類的核心點(diǎn),再重復(fù)上面的步驟,對(duì)該核心點(diǎn)進(jìn)行擴(kuò)充直到數(shù)據(jù)集中沒(méi)有新的核心點(diǎn)為止。數(shù)據(jù)集中沒(méi)有包含在任何簇中的數(shù)據(jù)點(diǎn)就構(gòu)成異常點(diǎn)。
如上圖所示,DBSCAN可以有效的解決KMeans不能正確分類的數(shù)據(jù)集。并且不需要知道K值。
當(dāng)然,DBCSAN還是要決定兩個(gè)參數(shù),如何決定這兩個(gè)參數(shù)是分類效果的關(guān)鍵因素:
1、一個(gè)參數(shù)是半徑(Eps),表示以給定點(diǎn)P為中心的圓形鄰域的范圍;
2、另一個(gè)參數(shù)是以點(diǎn)P為中心的鄰域內(nèi)最少點(diǎn)的數(shù)量(MinPts)。如果滿足:以點(diǎn)P為中心、半徑為Eps的鄰域內(nèi)的點(diǎn)的個(gè)數(shù)不少于MinPts,則稱點(diǎn)P為核心點(diǎn)。
監(jiān)督學(xué)習(xí)
監(jiān)督學(xué)習(xí)中的數(shù)據(jù)要求具有標(biāo)簽。也就是說(shuō)針對(duì)已有的結(jié)果去預(yù)測(cè)新出現(xiàn)的數(shù)據(jù)。如果要預(yù)測(cè)的內(nèi)容是數(shù)值類型,我們稱作回歸,如果要預(yù)測(cè)的內(nèi)容是類別或者是離散的,我們稱作分類。
其實(shí)回歸和分類本質(zhì)上是類似的,所以很多的算法既可以用作分類,也可以用作回歸。
回歸
線性回歸
線性回歸是最經(jīng)典的回歸算法。
在統(tǒng)計(jì)學(xué)中,線性回歸(Linear regression)是利用稱為線性回歸方程的最小二乘函數(shù)對(duì)一個(gè)或多個(gè)自變量和因變量之間關(guān)系進(jìn)行建模的一種回歸分析。
這種函數(shù)是一個(gè)或多個(gè)稱為回歸系數(shù)的模型參數(shù)的線性組合。 只有一個(gè)自變量的情況稱為簡(jiǎn)單回歸,大于一個(gè)自變量情況的叫做多元回歸。
如上圖所示,線性回歸就是要找到一條直線,使得所有的點(diǎn)預(yù)測(cè)的失誤最小。也就是圖中的藍(lán)色直線段的和最小。這個(gè)圖很像我們第一個(gè)例子中的PCA。仔細(xì)觀察,分辨它們的區(qū)別。
如果對(duì)于算法的的準(zhǔn)確性要求比較高,推薦的回歸算法包括:隨機(jī)森林,神經(jīng)網(wǎng)絡(luò)或者Gradient Boosting Tree。
如果要求速度優(yōu)先,建議考慮決策樹(shù)和線性回歸。
分類
支持向量機(jī) SVM
如果對(duì)于分類的準(zhǔn)確性要求比較高,可使用的算法包括Kernel SVM,隨機(jī)森林,神經(jīng)網(wǎng)絡(luò)以及Gradient Boosting Tree。
給定一組訓(xùn)練實(shí)例,每個(gè)訓(xùn)練實(shí)例被標(biāo)記為屬于兩個(gè)類別中的一個(gè)或另一個(gè),SVM訓(xùn)練算法創(chuàng)建一個(gè)將新的實(shí)例分配給兩個(gè)類別之一的模型,使其成為非概率二元線性分類器。
SVM模型是將實(shí)例表示為空間中的點(diǎn),這樣映射就使得單獨(dú)類別的實(shí)例被盡可能寬的明顯的間隔分開(kāi)。然后,將新的實(shí)例映射到同一空間,并基于它們落在間隔的哪一側(cè)來(lái)預(yù)測(cè)所屬類別。
如上圖所示,SVM算法就是在空間中找到一條直線,能夠最好的分割兩組數(shù)據(jù)。使得這兩組數(shù)據(jù)到直線的距離的絕對(duì)值的和盡可能的大。
上圖示意了不同的核方法的不同分類效果。
決策樹(shù)
如果要求分類結(jié)果是可以解釋的,可以考慮決策樹(shù)或者邏輯回歸。
決策樹(shù)(decision tree)是一個(gè)樹(shù)結(jié)構(gòu)(可以是二叉樹(shù)或非二叉樹(shù))。
其每個(gè)非葉節(jié)點(diǎn)表示一個(gè)特征屬性上的測(cè)試,每個(gè)分支代表這個(gè)特征屬性在某個(gè)值域上的輸出,而每個(gè)葉節(jié)點(diǎn)存放一個(gè)類別。
使用決策樹(shù)進(jìn)行決策的過(guò)程就是從根節(jié)點(diǎn)開(kāi)始,測(cè)試待分類項(xiàng)中相應(yīng)的特征屬性,并按照其值選擇輸出分支,直到到達(dá)葉子節(jié)點(diǎn),將葉子節(jié)點(diǎn)存放的類別作為決策結(jié)果。
決策樹(shù)可以用于回歸或者分類,下圖是一個(gè)分類的例子。
如上圖所示,決策樹(shù)把空間分割成不同的區(qū)域。
邏輯回歸
邏輯回歸雖然名字是回歸,但是卻是個(gè)分類算法。因?yàn)樗蚐VM類似是一個(gè)二分類,數(shù)學(xué)模型是預(yù)測(cè)1或者0的概率。所以我說(shuō)回歸和分類其實(shí)本質(zhì)上是一致的。
這里要注意邏輯回歸和線性SVM分類的區(qū)別
樸素貝葉斯
當(dāng)數(shù)據(jù)量相當(dāng)大的時(shí)候,樸素貝葉斯方法是一個(gè)很好的選擇。
15年我在公司給小伙伴們分享過(guò)bayers方法,可惜speaker deck被墻了,如果有興趣可以自行想辦法。
如上圖所示,大家可以思考一下左下的綠點(diǎn)對(duì)整體分類結(jié)果的影響。
KNN
KNN分類可能是所有機(jī)器學(xué)習(xí)算法里最簡(jiǎn)單的一個(gè)了。
如上圖所示,K=3,鼠標(biāo)移動(dòng)到任何一個(gè)點(diǎn),就找到距離該點(diǎn)最近的K個(gè)點(diǎn),然后,這K個(gè)點(diǎn)投票,多數(shù)表決獲勝。就是這么簡(jiǎn)單。
總結(jié)
本文利用二維交互圖幫助大家理解機(jī)器學(xué)習(xí)的基本算法,希望能增加大家對(duì)機(jī)器學(xué)習(xí)的各種方法有所了解。所有的代碼可以在參考中找到。歡迎大家來(lái)和我交流。
-
機(jī)器學(xué)習(xí)
+關(guān)注
關(guān)注
66文章
8428瀏覽量
132807
原文標(biāo)題:圖解機(jī)器學(xué)習(xí)
文章出處:【微信號(hào):TheAlgorithm,微信公眾號(hào):算法與數(shù)據(jù)結(jié)構(gòu)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論