色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

一文速覽大語言模型提示最新進展

深度學習自然語言處理 ? 來源:深度學習自然語言處理 ? 2023-12-27 14:19 ? 次閱讀

作者|湯昕宇

隨著大語言模型的發展,其在執行許多自然語言處理任務上取得了巨大的成功。但是,大語言模型對于提示是非常敏感的,提示中微小的變化都會導致大語言模型在執行任務時產生巨大的性能波動。因此,許多工作對大語言模型的提示進行了研究。本文主要從增強的提示方法,提示的自動優化和關于提示的分析三個方面,調研了大語言模型提示的最新進展。

增強的提示方法

盡管基本的CoT提示策略在復雜推理任務中展示出了強大的能力,但它仍然面臨著一些問題,比如推理過程存在錯誤和不穩定等。因此,一系列的研究通過增強的提示方法激發大語言模型的能力,從而完成更通用的任務。

Explanation Selection Using Unlabeled Data for Chain-of-Thought Prompting

作者:Xi Ye, Greg Durrett

https://arxiv.org/abs/2302.04813

這篇論文討論了如何優化大語言模型的解釋式提示,以提高其在文本推理任務上的表現。

作者提出了一種新穎的兩階段框架,以黑盒方式優化這些解釋式提示。首先,為每個提示中的樣例生成多種候選解釋,并使用兩個指標:對數似然和新例子上的準確性來評估這些解釋。然后,通過評估這些組合對來尋找最有效的解釋組合。文章證明了這種方法在各種文本推理任務上,包括問答、數學推理和自然語言推理中,能夠提高提示的有效性。

此外,這篇工作還強調了他們評估的指標的有效性,有助于識別和優先考慮效果最好的解釋組合,從而優化所需的計算資源。

3b91909e-a465-11ee-8b88-92fbcf53809c.png

Explanation Selection Using Unlabeled Data for Chain-of-Thought Prompting

CoF-CoT: Enhancing Large Language Models with Coarse-to-Fine Chain-of-Thought Prompting for Multi-domain NLU Tasks

作者:Hoang H. Nguyen, Ye Liu, Chenwei Zhang, Tao Zhang, Philip S. Yu

https://arxiv.org/abs/2310.14623

盡管思維鏈的方法在推理任務中頗受歡迎,但其在自然語言理解任務中的潛力尚未被充分挖掘。

本文受到大語言模型進行多步推理的啟發,提出了從粗到細的思維鏈(CoF-CoT)方法,該方法將自然語言理解任務分解為多個推理步驟,用基于語義的抽象意義表示結構化知識作為中間步驟,以捕捉話語的細微差別和多樣結構,以便大語言模型獲取并利用關鍵概念以從不同的粒度解決任務。

3b96d748-a465-11ee-8b88-92fbcf53809c.png

CoF-CoT

Chain of Code: Reasoning with a Language Model-Augmented Code Emulator

作者:Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen, Karol Hausman, Dorsa Sadigh, Sergey Levine, Li Fei-Fei, Fei Xia, Brian Ichter

https://arxiv.org/abs/2312.04474

代碼提供了構建復雜程序和進行精確計算的通用語法結構,當與代碼解釋器配對時,大語言模型可以利用編寫代碼的能力來改進思維鏈推理。因此,代碼可以幫助語言模型更好地進行推理,特別是在涉及邏輯和語義混合的任務中。

本文提出了代碼鏈(Chain of Code),旨在提升語言模型在處理邏輯、算術以及語義任務時的推理能力。利用大語言模型將語義子任務格式轉化為靈活的偽代碼,解釋器可以明確捕捉到未定義的行為,并將其交給大語言模型來模擬執行。實驗表明,“代碼鏈”在各種基準測試中都超越了“思維鏈”(Chain of Thought)和其他基線方法;在BIG-Bench Hard測試中,“代碼鏈”達到了84%的準確率,比“思維鏈”高出12%。

3bb032e2-a465-11ee-8b88-92fbcf53809c.png

Chain of Code

Tree Prompting: Efficient Task Adaptation without Fine-Tuning

作者:John X. Morris, Chandan Singh, Alexander M. Rush, Jianfeng Gao, Yuntian Deng

https://arxiv.org/abs/2310.14034

盡管提示是讓語言模型適應新任務的常用方法,但在較小的語言模型中,相比于基于梯度的微調方法,這種方法在準確度上通常較低。

針對這一挑戰,本文提出了一種“樹形提示(Tree Prompting)”的方法。這種方法建立了一個決策樹狀的提示系統,將多個語言模型調用串聯起來,協同完成特定任務。在推理階段,每一次對語言模型的調用都依靠決策樹來高效地確定,基于前一次調用的結果進行決定。實驗結果表明,在各種分類任務的數據集上,樹形提示不僅提升了準確性,而且與微調方法相比更具有競爭力。

3bbde5f4-a465-11ee-8b88-92fbcf53809c.png

Tree Prompting

Everything of Thoughts: Defying the Law of Penrose Triangle for Thought Generation

作者:Ruomeng Ding, Chaoyun Zhang, Lu Wang, Yong Xu, Minghua Ma, Wei Zhang, Si Qin, Saravan Rajmohan, Qingwei Lin, Dongmei Zhang

https://arxiv.org/abs/2311.04254

有效的思維設計需要考慮三個關鍵方面:性能、效率和靈活性。然而,現有的思維設計最多只能體現這三個屬性中的兩個。為了突破現有思維范式的“彭羅斯三角形定律”局限,本文引入了一種創新的思維提示方法,稱為“Everything of Thought”(XoT)。

XoT運用了預訓練的強化學習和蒙特卡洛樹搜索,將外部領域知識整合進思維中,從而增強大語言模型的能力,并使其能夠高效地泛化到未見過的問題。通過利用蒙特卡羅搜索和大語言模型的協作思維修正框架,這種方法可以自主地產生高質量的全面認知映射,并且只需最少的大語言模型的交互。此外,XoT賦予了大語言模型進行無約束思維的能力,為具有多重解決方案的問題提供靈活的認知映射。實驗表明,XoT在包括24點游戲、8數碼、口袋魔方等多個具有挑戰性的多解決方案問題上超過了現有方法。

3bc3b3c6-a465-11ee-8b88-92fbcf53809c.png

XoT

提示優化方法

提示是利用大語言模型解決各種任務的主要方法。由于提示的質量在很大程度上會影響大語言模型在特定任務中的表現,因此出現了一系列研究,旨在通過手動創建或自動優化來生成適當的任務提示。雖然手動創建任務提示更直觀,但這個過程非常耗時,更重要的是,模型對精心設計的提示非常敏感——不恰當的提示將導致任務表現不佳。因此,一系列的研究自動優化離散提示,以激發大語言模型解決特定任務的能力。

Prompt Optimization via Adversarial In-Context Learning

作者:Xuan Long Do, Yiran Zhao, Hannah Brown, Yuxi Xie, James Xu Zhao, Nancy F. Chen, Kenji Kawaguchi, Michael Qizhe Xie, Junxian He

https://arxiv.org/abs/2312.02614

adv-ICL方法借鑒了對抗生成網絡的思想,通過采用三個不同的大語言模型,分別作為生成器、辨別器和提示修改器來優化提示。在這個對抗性學習框架中,生成器和鑒別器之間進行類似于傳統對抗性學習的雙邊游戲,其中生成器嘗試生成足夠逼真的輸出以欺騙鑒別器。

具體來說,在每一輪中,首先給定包含一個任務指令和幾個樣例的輸入,生成器產生一個輸出。然后,辨別器的任務是將生成器的輸入輸出對分類為模型生成的數據還是真實數據。基于辨別器的損失,提示修改器會提出對生成器和辨別器提示的編輯,選擇最能改善對抗性損失的文本修改方法以優化提示。實驗表明,adv-ICL在11個生成和分類任務上取得了顯著的提升,包括總結、算術推理、機器翻譯、數據到文本生成,以及MMLU和Big-Bench Hard基準測試。

3bd386a2-a465-11ee-8b88-92fbcf53809c.png

adv-ICL

Black-Box Prompt Optimization: Aligning Large Language Models without Model Training

作者:Jiale Cheng, Xiao Liu, Kehan Zheng, Pei Ke, Hongning Wang, Yuxiao Dong, Jie Tang, Minlie Huang

https://arxiv.org/abs/2311.04155

雖然大語言模型在多種任務中展現了令人印象深刻的成功,但這些模型往往與人類的意圖不完全對齊。為了使大語言模型更好地遵循用戶指令,現有的方法主要集中在對模型進行額外的訓練上。然而,額外訓練大語言模型通常計算開銷很大;并且,黑盒模型往往無法進行用戶需求的訓練。

本文提出了BPO的方法,從不同的視角——通過優化用戶的提示,來適應大語言模型的輸入理解,從而在不更新大語言模型參數的情況下實現用戶意圖。實驗表明,通過BPO對齊的大語言模型在性能上可以勝過使用PPO和DPO對齊的相同模型,并且將BPO與PPO或DPO結合,還可以帶來額外的性能提升。

3bd78ce8-a465-11ee-8b88-92fbcf53809c.png

BPO

Robust Prompt Optimization for Large Language Models Against Distribution Shifts

作者:Moxin Li, Wenjie Wang, Fuli Feng, Yixin Cao, Jizhi Zhang, Tat-Seng Chua

https://arxiv.org/abs/2305.13954

大語言模型在多種自然語言處理任務中展現了顯著的能力。然而,它們的效果高度依賴于任務的提示。本文發現,雖然自動的提示優化技術使用帶標注的任務數據能帶來性能上的提升,但這些自動提示優化的技術容易受到分布偏移的影響,這在實際應用場景中是很常見的。基于此,本文提出了一個新問題,針對分布變化對大語言模型進行穩定的提示優化,這要求在具有標簽的源數據上優化的提示同時能夠泛化到未標記的目標數據上。

為了解決這個問題,本文提出了一種名為“泛化提示優化”(Generalized Prompt Optimization)的框架,將來自目標組的未標記數據納入提示優化中。廣泛的實驗結果表明,本文提出的框架在未標注的目標數據上有顯著的性能提升,并且在源數據上保持了性能。這表明該方法在在面對分布變化時,展現出處理真實世界數據時的有效性和魯棒性。

3bf02b90-a465-11ee-8b88-92fbcf53809c.png

Robust Prompt Optimization

InstOptima: Evolutionary Multi-objective Instruction Optimization via Large Language Model-based Instruction Operators

作者:Heng Yang, Ke Li

https://arxiv.org/abs/2310.17630

在大語言模型中,基于指令的語言建模受到了顯著的關注。然而,指令工程的效率仍然較低,最近的研究集中在自動化生成指令上,但它們主要旨在提高性能,而沒有考慮影響指令質量的其他重要目標,例如指令長度和困惑度。

因此,本文提出了一種新穎的方法(InstOptima),將指令生成視為一個進化的多目標優化問題。與基于文本編輯的方法不同,本文的方法利用大語言模型來模擬指令操作,包括變異和交叉。此外,本文的方法還為這些操作引入了一個目標引導機制,允許大語言模型理解目標并提高生成指令的質量。實驗結果證明了InstOptima在自動化生成指令和提升指令質量方面的有效性。

3bf433f2-a465-11ee-8b88-92fbcf53809c.png

InstOptima

關于提示的分析

How are Prompts Different in Terms of Sensitivity?

作者:Sheng Lu, Hendrik Schuff, Iryna Gurevych

https://arxiv.org/abs/2311.07230

上下文學習(ICL)已成為十分受歡迎的學習范式之一。盡管目前有越來越多的工作關注于提示工程,但在比較不同模型和任務提示效果的方面,缺乏系統性地分析。因此,本文提出了一種基于函數敏感性的全面提示分析。

本文的分析揭示了敏感性是模型性能的一種無監督代理指標,它與準確度呈現出強烈的負相關關系。本文使用基于梯度的顯著性分數展示了不同提示如何影響輸入對輸出的相關性,從而產生不同水平的敏感性。此外,本文引入了一種基于敏感性感知的解碼方式,將敏感性估計作為懲罰項納入標準的貪婪解碼中。實驗表明,這種方法在輸入信息稀缺時十分有效。

3c060a00-a465-11ee-8b88-92fbcf53809c.png

How are Prompts Different in Terms of Sensitivity?

The language of prompting: What linguistic properties make a prompt successful?

作者:Alina Leidinger, Robert van Rooij, Ekaterina Shutova

https://arxiv.org/abs/2311.01967

盡管大語言模型的表現高度依賴于提示的選擇,目前仍缺乏對于提示的語言屬性如何與任務表現相關聯的系統性分析。

在這項工作中,文章研究了不同大小、預訓練和指令調優過的大語言模型,在語義上等價但在語言結構上有所不同的提示上的表現。本文著重考察了諸如語氣、時態、情感等語法屬性,以及通過同義詞使用引入的詞匯-語義變化。研究結果與普遍的假設相悖,大語言模型在低困惑度的提示上達到最優表現,這些提示反映了預訓練或指令調優數據中使用的語言。提示在不同數據集或模型之間的可遷移性較差,且性能通常不能通過困惑度、詞頻、歧義性或提示長度來解釋。

審核編輯:黃飛

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 生成器
    +關注

    關注

    7

    文章

    319

    瀏覽量

    21081
  • 語言模型
    +關注

    關注

    0

    文章

    538

    瀏覽量

    10315
  • 自然語言處理

    關注

    1

    文章

    619

    瀏覽量

    13616

原文標題:一文速覽大語言模型提示最新進展

文章出處:【微信號:zenRRan,微信公眾號:深度學習自然語言處理】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    中國龍芯CPU及產品最新進展

    本內容向大家講解了中國龍芯CPU是什么意思,龍芯CPU最新產品及龍芯CPU最新進展情況
    發表于 12-07 17:09 ?2.8w次閱讀

    風光互補技術及應用新進展

    風光互補技術及應用新進展   [hide]風光互補技術及應用新進展.rar[/hide] [此貼子已經被作者于2009-10-22 11:52:24編輯過]
    發表于 10-22 11:51

    風光互補技術原理及最新進展

    風光互補技術原理及最新進展摘要: 簡要回顧國內外風電、光伏技術與應用發展態勢,結合風光互補系統應用, 分析、介紹了風光互補LED路燈照明系統、智能控制器設計、分布式供電電源、風光互補水泵系統,并著重
    發表于 10-26 13:45

    DIY懷表設計正式啟動,請關注最新進展

    ``我們的電子懷表正式啟動,強烈邀請各電子工程師嚴重關注,本次PCB板由華強PCB(http://www.hqpcb.com/ )提供。DIY懷表設計正式啟動,請關注最新進展。做電子的如
    發表于 01-13 09:27

    車聯網技術的最新進展

    `直播主題及亮點:在介紹中國車聯網的發展歷史的基礎上,分析目前的車聯網產品類型和技術路線,分析5G的技術特點、優勢和未來市場發展趨勢,介紹北斗與GPS的區別和北斗衛星的最新進展和應用。針對即將成為車
    發表于 09-21 14:01

    介紹IXIAIP測試平臺和所提供測試方案的最新進展

    介紹IXIAIP測試平臺和所提供測試方案的最新進展
    發表于 05-26 06:46

    ITU-T FG IPTV標準化最新進展如何?

    ITU-T FG IPTV標準化最新進展如何?
    發表于 05-27 06:06

    CMOS圖像傳感器最新進展及發展趨勢是什么?

    CMOS圖像傳感器最新進展及發展趨勢是什么?
    發表于 06-08 06:20

    VisionFive 2 AOSP最新進展即將發布!

    非常開心地在這里和大家提前預告,我們即將發布VisionFive 2 集成 AOSP的最新進展!請大家多多期待吧~ 此次通過眾多社區成員的支持和貢獻(https://github.com
    發表于 10-08 09:15

    UWB通信技術最新進展及發展趨勢

    UWB通信技術最新進展及發展趨勢,下來看看
    發表于 02-07 12:44 ?11次下載

    Topic醫療開發平臺的最新進展

    Xilinx醫療產品營銷經理Kamran Khan和Topic Embedded Products首席執行官Rieny Rijnen分享了由Xilinx Zynq All Programmable SoC實現的Topic醫療開發平臺的最新進展,共同解決了這問題。
    的頭像 發表于 11-22 06:51 ?3327次閱讀

    工業機器人市場的最新進展淺析

    靈活的自動化正變得越來越有能力,可用和負擔得起。我們采訪了FANUC America工業和汽車機器人部門總經理Claude Dinsmoor,了解工業機器人市場的最新進展
    發表于 12-14 14:14 ?1142次閱讀

    ASML***的最新進展

    、與 Mike在SEMICON 上的些討論以及 ASML 最近的財報電話會議中的些內容。以分享了ASML光刻機的最新進展
    的頭像 發表于 07-30 10:39 ?2380次閱讀
    ASML***的<b class='flag-5'>最新進展</b>

    5G最新進展深度解析.zip

    5G最新進展深度解析
    發表于 01-13 09:06 ?1次下載

    百度首席技術官王海峰解讀心大模型的關鍵技術和最新進展

    4月16日,以“創造未來”為主題的Create 2024百度AI開發者大會在深圳國際會展中心成功舉辦。百度首席技術官王海峰以“技術筑基,星河璀璨”為題,發表演講,解讀了智能體、代碼、多模型等多項心大模型的關鍵技術和
    的頭像 發表于 04-18 09:20 ?737次閱讀
    百度首席技術官王海峰解讀<b class='flag-5'>文</b>心大<b class='flag-5'>模型</b>的關鍵技術和<b class='flag-5'>最新進展</b>
    主站蜘蛛池模板: 亚洲色爽视频在线观看 | 大学生第一次破苞疼哭了 | 日韩在线 无码 精品 | 成人午夜精品久久久久久久秋霞 | 精品夜夜澡人妻无码AV | 日本xxxxxxxxx老师59| 羞羞答答影院在线 | 亚洲免费福利在线视频 | 欧洲亚洲精品A片久久99果冻 | 久久视频精品38线视频在线观看 | 亚洲精品美女久久777777 | 污污内射久久一区二区欧美日韩 | 熟女久久久久久久久久久 | 欧美双拳极限扩张 | 草莓视频在线观看完整高清免费 | 午夜福利32集云播 | 中文字幕人成乱码熟女APP | 国产精品成人A蜜柚在线观看 | 扒开老师粉嫩的泬10P | 吉吉av电影 | 亚洲一级特黄 | 国产又湿又黄又硬又刺激视频 | 狠很橹快播 | 免费高清在线影片一区 | 5278欧美一区二区三区 | 亞洲人妻AV無碼在線視頻 | 麻豆一区二区三区蜜桃免费 | 中国农村真实bbwbbwbbw | 国产专区亚洲欧美另类在线 | 久久伦理影院 | 国产精品亚洲欧美 | 手机在线亚洲日韩国产 | 日本最新在线不卡免费视频 | 久久是热频国产在线 | 国产成人小视频在线观看 | 91九色porny蝌蚪 | 日韩成人性视频 | 花蝴蝶高清影视视频在线播放 | 爱情岛论坛网亚洲品质 | 富婆找黑人老外泻火在线播放 | 粗好大用力好深快点漫画 |