使用 TensorFlow2 訓(xùn)練目標(biāo)檢測(cè)模型
因?yàn)槲业捻?xiàng)目是計(jì)劃在飛騰派上實(shí)現(xiàn)一個(gè)目標(biāo)檢測(cè)跟蹤算法,通過算法輸出控制信號(hào)控制電機(jī)跟隨目標(biāo)運(yùn)行。在第一章完成了Ubuntu系統(tǒng)的構(gòu)建和燒寫,這幾天就在研究如何訓(xùn)練目標(biāo)檢測(cè)模型和部署,經(jīng)過一段時(shí)間的資料搜集和測(cè)試,目前已經(jīng)順利使用 TensorFlow2 完成了模型的訓(xùn)練的測(cè)試,首先描述下我測(cè)試的 PC 配置。
單個(gè) step 實(shí)際測(cè)試大概2s+,為了加快測(cè)試,我設(shè)置了訓(xùn)練的 step 為 300 ,實(shí)際測(cè)試15分鐘左右完成了模型訓(xùn)練,這個(gè)在后續(xù)配置文件中可以看到。
PC端關(guān)鍵的軟件配置
內(nèi)核 :Linux fedora 6.6.4-100.fc38.x86_64 #1 SMP PREEMPT_DYNAMIC Sun Dec 3 18:11:27 UTC 2023 x86_64 GNU/Linux
Python :Python 3.8.18 (default, Aug 28 2023, 00:00:00)
參考內(nèi)容
- [How to train your own Object Detector with TensorFlow’s Object Detector API]
- [How to Train Your Own Object Detector Using TensorFlow Object Detection API]
環(huán)境準(zhǔn)備
為了訓(xùn)練的方便,建議安裝一個(gè)虛擬的python環(huán)境,首先創(chuàng)建一個(gè)新的文件夾demo,然后 進(jìn)入到 demo 目錄 。
- 首先接著使用到 python 的 venv 模塊創(chuàng)建一個(gè)虛擬環(huán)境。
python -m venv tf2_api_env
- 接著激活創(chuàng)建的虛擬環(huán)境
? source ../tf2_api_env/bin/activate
(tf2_api_env) ┏─?[red]?─?[17:01:44]?─?[0]
┗─?[~/Projects/ai_track_feiteng/demo2/workspace]
?
- 接下來的操作都在這個(gè)虛擬環(huán)境中完成,下面開始安裝 tensorflow2:
pip install tensorflow==2.*
- 下載,安裝編譯 models 下的 Protobuf
git clone https://github.com/tensorflow/models.git
cd models/research/
protoc models/research/object_detection/protos/*.proto --python_out=../../
- 下載,安裝編譯 coco API
pip install cython
git clone https://github.com/cocodataset/cocoapi.git
cd cocoapi/PythonAPI
make
cp -r pycocotools ./models/research/
- 對(duì)象檢測(cè) API 安裝
cd models/research
cp object_detection/packages/tf2/setup.py .
python3.8 -m pip install .
- 測(cè)試是否安裝正確
python3.8 object_detection/builders/model_builder_tf2_test.py
2023-12-14 18:30:03.462617: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-
off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2023-12-14 18:30:03.463746: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.
2023-12-14 18:30:03.489237: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.
2023-12-14 18:30:03.489587: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical
operations.
To enable the following instructions: AVX2 AVX_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-12-14 18:30:03.994817: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
2023-12-14 18:30:04.975870: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there m
ust be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
2023-12-14 18:30:04.976136: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1960] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above
are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your
platform.
Skipping registering GPU devices...
Running tests under Python 3.8.18: /home/red/Projects/ai_track_feiteng/demo2/tf2_api_env/bin/python3.8
[ RUN ] ModelBuilderTF2Test.test_create_center_net_deepmac
WARNING:tensorflow:`tf.keras.layers.experimental.SyncBatchNormalization` endpoint is deprecated and will be removed in a future release. Please use `tf.keras.layers.BatchNorm
alization` with parameter `synchronized` set to True.
W1214 18:30:05.009487 140273879242560 batch_normalization.py:1531] `tf.keras.layers.experimental.SyncBatchNormalization` endpoint is deprecated and will be removed in a futur
e release. Please use `tf.keras.layers.BatchNormalization` with parameter `synchronized` set to True.
/home/red/Projects/ai_track_feiteng/demo2/tf2_api_env/lib64/python3.8/site-packages/object_detection/builders/model_builder.py:1112: DeprecationWarning: The 'warn' function i
s deprecated, use 'warning' instead
logging.warn(('Building experimental DeepMAC meta-arch.'
...... 省略 ......
[ RUN ] ModelBuilderTF2Test.test_session
[ SKIPPED ] ModelBuilderTF2Test.test_session
[ RUN ] ModelBuilderTF2Test.test_unknown_faster_rcnn_feature_extractor
INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_unknown_faster_rcnn_feature_extractor): 0.0s
I1214 18:30:21.144221 140273879242560 test_util.py:2462] time(__main__.ModelBuilderTF2Test.test_unknown_faster_rcnn_feature_extractor): 0.0s
[ OK ] ModelBuilderTF2Test.test_unknown_faster_rcnn_feature_extractor
[ RUN ] ModelBuilderTF2Test.test_unknown_meta_architecture
INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_unknown_meta_architecture): 0.0s
I1214 18:30:21.144374 140273879242560 test_util.py:2462] time(__main__.ModelBuilderTF2Test.test_unknown_meta_architecture): 0.0s
[ OK ] ModelBuilderTF2Test.test_unknown_meta_architecture
[ RUN ] ModelBuilderTF2Test.test_unknown_ssd_feature_extractor
INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_unknown_ssd_feature_extractor): 0.0s
I1214 18:30:21.144848 140273879242560 test_util.py:2462] time(__main__.ModelBuilderTF2Test.test_unknown_ssd_feature_extractor): 0.0s
[ OK ] ModelBuilderTF2Test.test_unknown_ssd_feature_extractor
----------------------------------------------------------------------
Ran 24 tests in 16.167s
OK (skipped=1)
- 數(shù)據(jù)準(zhǔn)備,這里為了重點(diǎn)關(guān)注模型訓(xùn)練過程,我們這里從倉庫[raccoon_dataset]獲取已經(jīng)標(biāo)注好的數(shù)據(jù)集。
然后放在對(duì)應(yīng)的目錄 workspace/data 目錄,如下所示:
? ls workspace/data/
object-detection.pbtxt raccoon_labels.csv test_labels.csv test.record train_labels.csv train.record
- 模型選擇和訓(xùn)練參數(shù)配置(重點(diǎn)!!!,這里為了演示不會(huì)詳細(xì)介紹每一個(gè)參數(shù)的意義,具體參數(shù)的意義可以查看)
- 模型選擇,現(xiàn)在有很多現(xiàn)成的模型可以加快我們的訓(xùn)練,我們需要在此基礎(chǔ)上進(jìn)行調(diào)參,TensorFlow2 對(duì)象檢測(cè)已有的算法模型在這里 [tf2_detection_zoo],這里我們需要從中下載一個(gè)模型進(jìn)行訓(xùn)練,本章中我選擇的是 [efficientdet_d0_coco17_tpu-32.tar.gz]。將這個(gè)模型的壓縮包解壓到 demo/workspace/pre_trained_models 目錄下。
? tree -L 3 workspace/pre_trained_models/efficientdet_d0_coco17_tpu-32/
workspace/pre_trained_models/efficientdet_d0_coco17_tpu-32/
├── checkpoint
│ ├── checkpoint
│ ├── ckpt-0.data-00000-of-00001
│ └── ckpt-0.index
├── pipeline.config
└── saved_model
├── assets
├── saved_model.pb
└── variables
├── variables.data-00000-of-00001
└── variables.index
5 directories, 7 files
這里關(guān)鍵的是 chekpoint 目錄和 pipeline.config,checkpoint 包含了目標(biāo)訓(xùn)練的切入點(diǎn),pipeline.config 是我們后續(xù)需要調(diào)整的模型訓(xùn)練配置文件。
- 訓(xùn)練參數(shù)微調(diào),這里為了加快介紹模型訓(xùn)練的過程,直接看下對(duì)該文件的 diff 文件可以更直觀看到做了哪些修改
--- workspace/pre_trained_models/efficientdet_d0_coco17_tpu-32/pipeline.config 2020-07-11 08:12:31.000000000 +0800
+++ workspace/models/efficientdet_d0/v2/pipeline.config 2023-12-14 14:10:58.998130084 +0800
@@ -1,6 +1,6 @@
model {
ssd {
- num_classes: 90
+ num_classes: 1
image_resizer {
keep_aspect_ratio_resizer {
min_dimension: 512
@@ -131,7 +131,7 @@
}
}
train_config {
- batch_size: 128
+ batch_size: 8
data_augmentation_options {
random_horizontal_flip {
}
@@ -149,29 +149,29 @@
learning_rate {
cosine_decay_learning_rate {
learning_rate_base: 0.07999999821186066
- total_steps: 300000
+ total_steps: 300
warmup_learning_rate: 0.0010000000474974513
- warmup_steps: 2500
+ warmup_steps: 25
}
}
momentum_optimizer_value: 0.8999999761581421
}
use_moving_average: false
}
- fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED"
- num_steps: 300000
+ fine_tune_checkpoint: "/home/red/Projects/ai_track_feiteng/demo2/workspace/pre_trained_models/efficientdet_d0_coco17_tpu-32/checkpoint/ckpt-0"
+ num_steps: 300
startup_delay_steps: 0.0
replicas_to_aggregate: 8
max_number_of_boxes: 100
unpad_groundtruth_tensors: false
- fine_tune_checkpoint_type: "classification"
- use_bfloat16: true
+ fine_tune_checkpoint_type: "detection"
+ use_bfloat16: false
fine_tune_checkpoint_version: V2
}
train_input_reader: {
- label_map_path: "PATH_TO_BE_CONFIGURED/label_map.txt"
+ label_map_path: "/home/red/Projects/ai_track_feiteng/demo2/workspace/data/object-detection.pbtxt"
tf_record_input_reader {
- input_path: "PATH_TO_BE_CONFIGURED/train2017-?????-of-00256.tfrecord"
+ input_path: "/home/red/Projects/ai_track_feiteng/demo2/workspace/data/train.record"
}
}
@@ -182,10 +182,10 @@
}
eval_input_reader: {
- label_map_path: "PATH_TO_BE_CONFIGURED/label_map.txt"
+ label_map_path: "/home/red/Projects/ai_track_feiteng/demo2/workspace/data/object-detection.pbtxt"
shuffle: false
num_epochs: 1
tf_record_input_reader {
- input_path: "PATH_TO_BE_CONFIGURED/val2017-?????-of-00032.tfrecord"
+ input_path: "/home/red/Projects/ai_track_feiteng/demo2/workspace/data/test.record"
}
}
其中關(guān)鍵的修改點(diǎn):
num_classes = 1 表示識(shí)別一類目標(biāo)
batch_size = 8 表示這個(gè)參數(shù)會(huì)影響訓(xùn)練時(shí)候消耗的內(nèi)存
fine_tune_checkpoint_type: "detection" 表示進(jìn)行目標(biāo)檢測(cè)
use_bfloat16: false 不使用 TPU
fine_tune_checkpoint: "/home/red/Projects/ai_track_feiteng/demo2/workspace/pre_trained_models/efficientdet_d0_coco17_tpu-32/checkpoint/ckpt-0" 設(shè)置模型訓(xùn)練的切入點(diǎn)
num_steps: 300 總的學(xué)習(xí)步數(shù)
- 模型訓(xùn)練和導(dǎo)出
經(jīng)過前面的鋪墊,目前已經(jīng)具備了訓(xùn)練條件,執(zhí)行如下腳本開始訓(xùn)練,我這邊訓(xùn)練了大概15分鐘:
#!/bin/sh
python3.8 model_main_tf2.py
--pipeline_config_path=./models/efficientdet_d0/v2/pipeline.config
--model_dir=./models/efficientdet_d0/v2
--checkpoint_every_n=8
--num_workers=12
--alsologtostderr
訓(xùn)練完成后,就可以將模型導(dǎo)出,使用如下命令:
python3.8 exporter_main_v2.py
--pipeline_config_path=./models/efficientdet_d0/v2/pipeline.config
--trained_checkpoint_dir=./models/efficientdet_d0/v2
--output_directory=./exported_models/efficientdet_d0
--input_type=image_tensor
上述命令會(huì)將模型導(dǎo)出到 ./exported_models/efficientdet_d0 目錄,導(dǎo)出成功后會(huì)看到如下內(nèi)容:
? tree -L 3 workspace/exported_models/efficientdet_d0/
workspace/exported_models/efficientdet_d0/
├── checkpoint
│ ├── checkpoint
│ ├── ckpt-0.data-00000-of-00001
│ └── ckpt-0.index
├── pipeline.config
└── saved_model
├── assets
├── fingerprint.pb
├── saved_model.pb
└── variables
├── variables.data-00000-of-00001
└── variables.index
5 directories, 8 files
可以看到這是我們自己訓(xùn)練出來的模型和前面提到的和網(wǎng)上下載的模型efficientdet_d0_coco17_tpu-32.tar.gz解壓之后的結(jié)構(gòu)很像。
11. 最后就演示下訓(xùn)練模型的精度,這里提供了網(wǎng)上的一個(gè)示例代碼,針對(duì)我的代碼結(jié)構(gòu),我做了下微調(diào)(代碼之前是在.ipynb格式文件中的,為此,我還改了一個(gè) python 腳本用來提取其中的 python代碼),該代碼會(huì)對(duì)測(cè)試圖像進(jìn)行檢測(cè),將識(shí)別出來的目標(biāo)用框標(biāo)注出來。首先看下測(cè)試的腳本:
#!/bin/python3.8
import os # importing OS in order to make GPU visible
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" # do not change anything in here
# specify which device you want to work on.
# Use "-1" to work on a CPU. Default value "0" stands for the 1st GPU that will be used
os.environ["CUDA_VISIBLE_DEVICES"]="0" # TODO: specify your computational device
import tensorflow as tf # import tensorflow
# checking that GPU is found
if tf.test.gpu_device_name():
print('GPU found')
else:
print("No GPU found")
# other import
import numpy as np
from PIL import Image
import matplotlib
from matplotlib import pyplot as plt
from tqdm import tqdm
import sys # importyng sys in order to access scripts located in a different folder
print(matplotlib.get_backend())
path2scripts = ['../models/research/', '../models/'] # TODO: provide pass to the research folder
sys.path.insert(0, path2scripts[0]) # making scripts in models/research available for import
sys.path.insert(0, path2scripts[1]) # making scripts in models/research available for import
print(sys.path)
# importing all scripts that will be needed to export your model and use it for inference
from object_detection.utils import label_map_util
from object_detection.utils import config_util
from object_detection.utils import visualization_utils as viz_utils
from object_detection.builders import model_builder
# NOTE: your current working directory should be Tensorflow.
# TODO: specify two pathes: to the pipeline.config file and to the folder with trained model.
path2config ='exported_models/efficientdet_d0/pipeline.config'
path2model = 'exported_models/efficientdet_d0/'
# do not change anything in this cell
configs = config_util.get_configs_from_pipeline_file(path2config) # importing config
model_config = configs['model'] # recreating model config
detection_model = model_builder.build(model_config=model_config, is_training=False) # importing model
ckpt = tf.compat.v2.train.Checkpoint(model=detection_model)
ckpt.restore(os.path.join(path2model, 'checkpoint/ckpt-0')).expect_partial()
path2label_map = 'data/object-detection.pbtxt' # TODO: provide a path to the label map file
category_index = label_map_util.create_category_index_from_labelmap(path2label_map,use_display_name=True)
def detect_fn(image):
"""
Detect objects in image.
Args:
image: (tf.tensor): 4D input image
Returs:
detections (dict): predictions that model made
"""
image, shapes = detection_model.preprocess(image)
prediction_dict = detection_model.predict(image, shapes)
detections = detection_model.postprocess(prediction_dict, shapes)
return detections
def load_image_into_numpy_array(path):
"""Load an image from file into a numpy array.
Puts image into numpy array to feed into tensorflow graph.
Note that by convention we put it into a numpy array with shape
(height, width, channels), where channels=3 for RGB.
Args:
path: the file path to the image
Returns:
numpy array with shape (img_height, img_width, 3)
"""
return np.array(Image.open(path))
def inference_with_plot(path2images, box_th=0.25):
"""
Function that performs inference and plots resulting b-boxes
Args:
path2images: an array with pathes to images
box_th: (float) value that defines threshold for model prediction.
Returns:
None
"""
for image_path in path2images:
print('Running inference for {}... '.format(image_path), end='')
image_np = load_image_into_numpy_array(image_path)
input_tensor = tf.convert_to_tensor(np.expand_dims(image_np, 0), dtype=tf.float32)
detections = detect_fn(input_tensor)
# All outputs are batches tensors.
# Convert to numpy arrays, and take index [0] to remove the batch dimension.
# We're only interested in the first num_detections.
num_detections = int(detections.pop('num_detections'))
detections = {key: value[0, :num_detections].numpy()
for key, value in detections.items()}
detections['num_detections'] = num_detections
# detection_classes should be ints.
detections['detection_classes'] = detections['detection_classes'].astype(np.int64)
label_id_offset = 1
image_np_with_detections = image_np.copy()
viz_utils.visualize_boxes_and_labels_on_image_array(
image_np_with_detections,
detections['detection_boxes'],
detections['detection_classes']+label_id_offset,
detections['detection_scores'],
category_index,
use_normalized_coordinates=True,
max_boxes_to_draw=200,
min_score_thresh=box_th,
agnostic_mode=False,
line_thickness=5)
plt.figure(figsize=(15,10))
plt.imshow(image_np_with_detections)
print('Done')
marked_file_name="marked_"+image_path
plt.savefig(marked_file_name)
print('Saved {} Done'.format(marked_file_name))
matplotlib.use('TkAgg')
plt.show()
def nms(rects, thd=0.5):
"""
Filter rectangles
rects is array of oblects ([x1,y1,x2,y2], confidence, class)
thd - intersection threshold (intersection divides min square of rectange)
"""
out = []
remove = [False] * len(rects)
for i in range(0, len(rects) - 1):
if remove[i]:
continue
inter = [0.0] * len(rects)
for j in range(i, len(rects)):
if remove[j]:
continue
inter[j] = intersection(rects[i][0], rects[j][0]) / min(square(rects[i][0]), square(rects[j][0]))
max_prob = 0.0
max_idx = 0
for k in range(i, len(rects)):
if inter[k] >= thd:
if rects[k][1] > max_prob:
max_prob = rects[k][1]
max_idx = k
for k in range(i, len(rects)):
if (inter[k] >= thd) & (k != max_idx):
remove[k] = True
for k in range(0, len(rects)):
if not remove[k]:
out.append(rects[k])
boxes = [box[0] for box in out]
scores = [score[1] for score in out]
classes = [cls[2] for cls in out]
return boxes, scores, classes
def intersection(rect1, rect2):
"""
Calculates square of intersection of two rectangles
rect: list with coords of top-right and left-boom corners [x1,y1,x2,y2]
return: square of intersection
"""
x_overlap = max(0, min(rect1[2], rect2[2]) - max(rect1[0], rect2[0]));
y_overlap = max(0, min(rect1[3], rect2[3]) - max(rect1[1], rect2[1]));
overlapArea = x_overlap * y_overlap;
return overlapArea
def square(rect):
"""
Calculates square of rectangle
"""
return abs(rect[2] - rect[0]) * abs(rect[3] - rect[1])
def inference_as_raw_output(path2images,
box_th = 0.25,
nms_th = 0.5,
to_file = False,
data = None,
path2dir = False):
"""
Function that performs inference and return filtered predictions
Args:
path2images: an array with pathes to images
box_th: (float) value that defines threshold for model prediction. Consider 0.25 as a value.
nms_th: (float) value that defines threshold for non-maximum suppression. Consider 0.5 as a value.
to_file: (boolean). When passed as True = > results are saved into a file. Writing format is
path2image + (x1abs, y1abs, x2abs, y2abs, score, conf) for box in boxes
data: (str) name of the dataset you passed in (e.g. test/validation)
path2dir: (str). Should be passed if path2images has only basenames. If full pathes provided = > set False.
Returs:
detections (dict): filtered predictions that model made
"""
print (f'Current data set is {data}')
print (f'Ready to start inference on {len(path2images)} images!')
for image_path in tqdm(path2images):
if path2dir: # if a path to a directory where images are stored was passed in
image_path = os.path.join(path2dir, image_path.strip())
image_np = load_image_into_numpy_array(image_path)
input_tensor = tf.convert_to_tensor(np.expand_dims(image_np, 0), dtype=tf.float32)
detections = detect_fn(input_tensor)
# checking how many detections we got
num_detections = int(detections.pop('num_detections'))
# filtering out detection in order to get only the one that are indeed detections
detections = {key: value[0, :num_detections].numpy() for key, value in detections.items()}
# detection_classes should be ints.
detections['detection_classes'] = detections['detection_classes'].astype(np.int64)
# defining what we need from the resulting detection dict that we got from model output
key_of_interest = ['detection_classes', 'detection_boxes', 'detection_scores']
# filtering out detection dict in order to get only boxes, classes and scores
detections = {key: value for key, value in detections.items() if key in key_of_interest}
if box_th: # filtering detection if a confidence threshold for boxes was given as a parameter
for key in key_of_interest:
scores = detections['detection_scores']
current_array = detections[key]
filtered_current_array = current_array[scores > box_th]
detections[key] = filtered_current_array
if nms_th: # filtering rectangles if nms threshold was passed in as a parameter
# creating a zip object that will contain model output info as
output_info = list(zip(detections['detection_boxes'],
detections['detection_scores'],
detections['detection_classes']
)
)
boxes, scores, classes = nms(output_info)
detections['detection_boxes'] = boxes # format: [y1, x1, y2, x2]
detections['detection_scores'] = scores
detections['detection_classes'] = classes
if to_file and data: # if saving to txt file was requested
image_h, image_w, _ = image_np.shape
file_name = f'pred_result_{data}.txt'
line2write = list()
line2write.append(os.path.basename(image_path))
with open(file_name, 'a+') as text_file:
# iterating over boxes
for b, s, c in zip(boxes, scores, classes):
y1abs, x1abs = b[0] * image_h, b[1] * image_w
y2abs, x2abs = b[2] * image_h, b[3] * image_w
list2append = [x1abs, y1abs, x2abs, y2abs, s, c]
line2append = ','.join([str(item) for item in list2append])
line2write.append(line2append)
line2write = ' '.join(line2write)
text_file.write(line2write + os.linesep)
return detections
inference_with_plot(["1.jpg", "2.jpg"], 0.6)
這個(gè)腳本會(huì)檢測(cè)當(dāng)前目錄下的 1.jpg 和 2.jpg 文件,然后將識(shí)別出來概率>0.5的目標(biāo)用框框起來,并分別命名為marked_1.jpg和marked_2.jpg。原始圖像分別是:
執(zhí)行腳本進(jìn)行檢測(cè)處理:
? source ../t./b.py
2023-12-15 06:28:50.519691: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2023-12-15 06:28:50.520813: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.
2023-12-15 06:28:50.545707: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.
2023-12-15 06:28:50.546025: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-12-15 06:28:50.990588: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
2023-12-15 06:28:51.480008: E tensorflow/compiler/xla/stream_executor/cuda/cuda_driver.cc:268] failed call to cuInit: CUDA_ERROR_UNKNOWN: unknown error
2023-12-15 06:28:51.480053: I tensorflow/compiler/xla/stream_executor/cuda/cuda_diagnostics.cc:168] retrieving CUDA diagnostic information for host: fedora
2023-12-15 06:28:51.480057: I tensorflow/compiler/xla/stream_executor/cuda/cuda_diagnostics.cc:175] hostname: fedora
2023-12-15 06:28:51.480104: I tensorflow/compiler/xla/stream_executor/cuda/cuda_diagnostics.cc:199] libcuda reported version is: 535.146.2
2023-12-15 06:28:51.480114: I tensorflow/compiler/xla/stream_executor/cuda/cuda_diagnostics.cc:203] kernel reported version is: 535.146.2
2023-12-15 06:28:51.480117: I tensorflow/compiler/xla/stream_executor/cuda/cuda_diagnostics.cc:309] kernel version seems to match DSO: 535.146.2
No GPU found
TkAgg
['../models/', '../models/research/', '/home/red/Projects/ai_track_feiteng/demo2/workspace', '/usr/lib64/python38.zip', '/usr/lib64/python3.8', '/usr/lib64/python3.8/lib-dynload', '/home/red/.local/lib/python3.8/site-packages', '/usr/lib64/python3.8/site-packages', '/usr/lib/python3.8/site-packages']
Running inference for 1.jpg... Done
Saved marked_1.jpg Done
Running inference for 2.jpg... Done
Saved marked_2.jpg Done
檢測(cè)后并處理的圖像是:
因?yàn)橛?xùn)練的次數(shù)較少,導(dǎo)致識(shí)別的準(zhǔn)確度并不是特別高,但是整個(gè)訓(xùn)練和演示的流程的還是完整的。希望能對(duì)大家了解 TensorFlow2 進(jìn)行目標(biāo)檢測(cè)有所幫助。
這里再附下,提取.ipynb格式文件中python代碼的示例代碼:
#!/bin/python3.8
import json
import sys
import os
from pathlib import Path
out_file_name=Path(sys.argv[1]).stem+'.py'
with open(sys.argv[1],'r') as f:
text=json.load(f)
if len(sys.argv) > 2:
out_file_name = sys.argv[2]
print('args:{}nout_file:{}'.format(sys.argv[1:], out_file_name))
with open(out_file_name, 'w') as fp:
fp.writelines("#!/bin/python3.8nn")
for x in text['cells']:
if x['cell_type'] == "code":
fp.writelines([i.rstrip()+'n' for i in x['source']])
下一章,我會(huì)介紹如何獲取圖像數(shù)據(jù), 標(biāo)柱圖像 ,然后進(jìn)行模型訓(xùn)練,敬請(qǐng)期待。
審核編輯 黃宇
-
目標(biāo)檢測(cè)
+關(guān)注
關(guān)注
0文章
209瀏覽量
15621 -
tensorflow
+關(guān)注
關(guān)注
13文章
329瀏覽量
60537 -
飛騰派
+關(guān)注
關(guān)注
2文章
9瀏覽量
234
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論