色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

斯坦福教授Manning長文梳理:十年后的基礎模型能成AGI嗎?

深度學習自然語言處理 ? 來源:新智元 ? 2023-09-07 16:04 ? 次閱讀

【新智元導讀】從手工規則、神經網絡到Transformer基礎模型,自然語言處理的未來是統一多模態,走向通用人工智能!

過去十年間,僅靠簡單的神經網絡計算,以及大規模的訓練數據支持,自然語言處理領域取得了相當大的突破,由此訓練得到的預訓練語言模型,如BERT、GPT-3等模型都提供了強大的通用語言理解、生成和推理能力。

前段時間,斯坦福大學大學教授Christopher D. Manning在Daedalus期刊上發表了一篇關于「人類語言理解和推理」的論文,主要梳理自然語言處理的發展歷史,并分析了基礎模型的未來發展前景。

論文作者Christopher Manning是斯坦福大學計算機與語言學教授,也是將深度學習應用于自然語言處理領域的領軍者,研究方向專注于利用機器學習方法處理計算語言學問題,以使計算機能夠智能處理、理解并生成人類語言。

Manning教授是ACM Fellow,AAAI Fellow 和ACL Fellow,他的多部著作,如《統計自然語言處理基礎》、《信息檢索導論》等都成為了經典教材,其課程斯坦福CS224n《深度學習自然語言處理》更是無數NLPer的入門必看。

NLP的四個時代

第一時代(1950-1969)

NLP的研究最早始于機器翻譯的研究,當時的人們認為,翻譯任務可以基于二戰期間在密碼破譯的成果繼續發展,冷戰的雙方也都在開發能夠翻譯其他國家科學成果的系統,不過在此期間,人們對自然語言、人工智能或機器學習的結構幾乎一無所知。

當時的計算量和可用數據都非常少,雖然最初的系統被大張旗鼓地宣傳,但這些系統只提供了單詞級的翻譯查找和一些簡單的、基于規則的機制來處理單詞的屈折形式(形態學)和詞序。

第二時代(1970-1992)

這一時期可以看到一系列NLP演示系統的發展,在處理自然語言中的語法和引用等現象方面表現出了復雜性和深度,包括Terry Winograd的SHRDLU,Bill Woods的LUNAR,Roger Schank的SAM,加里Hendrix的LIFER和Danny Bobrow的GUS,都是手工構建的、基于規則的系統,甚至還可用用于諸如數據庫查詢之類的任務。

語言學和基于知識的人工智能正在迅速發展,在這個時代的第二個十年,出現了新一代手工構建的系統,在陳述性語言知識和程序處理之間有著明確的界限,并且受益于語言學理論的發展。

第三時代(1993-2012)

在此期間,數字化文本的可用數量顯著提升,NLP的發展逐漸轉為深度的語言理解,從數千萬字的文本中提取位置、隱喻概念等信息,不過仍然只是基于單詞分析,所以大部分研究人員主要專注于帶標注的語言資源,如標記單詞的含義、公司名稱、樹庫等,然后使用有監督機器學習技術來構建模型。

第四時代(2013-現在)

深度學習或人工神經網絡方法開始發展,可以對長距離的上下文進行建模,單詞和句子由數百或數千維的實值向量空間進行表示,向量空間中的距離可以表示意義或語法的相似度,不過在執行任務上還是和之前的有監督學習類似。

2018年,超大規模自監督神經網絡學習取得了重大成功,可以簡單地輸入大量文本(數十億個單詞)來學習知識,基本思想就是在「給定前幾個單詞」的情況下連續地預測下一個單詞,重復數十億次預測并從錯誤中學習,然后就可以用于問答或文本分類任務。

預訓練的自監督方法的影響是革命性的,無需人類標注即可產生一個強大的模型,后續簡單微調即可用于各種自然語言任務。

模型架構

自2018年以來,NLP應用的主要神經網絡模型轉為Transformer神經網絡,核心思想是注意力機制,單詞的表征計算為來自其他位置單詞表征的加權組合。

Transofrmer一個常見的自監督目標是遮罩文本中出現的單詞,將該位置的query, key和value向量與其他單詞進行比較,計算出注意力權重并加權平均,再通過全連接層、歸一化層和殘差連接來產生新的單詞向量,再重復多次增加網絡的深度。

c79c93dc-4d39-11ee-a25d-92fbcf53809c.png

雖然Transformer的網絡結構看起來不復雜,涉及到的計算也很簡單,但如果模型參數量足夠大,并且有大量的數據用來訓練預測的話,模型就可以發現自然語言的大部分結構,包括句法結構、單詞的內涵、事實知識等。

prompt生成

從2018年到2020年,研究人員使用大型預訓練語言模型(LPLM)的主要方法就是使用少量的標注數據進行微調,使其適用于自定義任務。

但GPT-3(Generative Pre-training Transformer-3)發布后,研究人員驚訝地發現,只需要輸入一段prompt,即便在沒有訓練過的新任務上,模型也可以很好地完成。

相比之下,傳統的NLP模型由多個精心設計的組件以流水線的方式組裝起來,先捕獲文本的句子結構和低級實體,然后再識別出更高層次的含義,再輸入到某些特定領域的執行組件中。

在過去的幾年里,公司已經開始用LPLM取代這種傳統的NLP解決方案,通過微調來執行特定任務。

機器翻譯

早期的機器翻譯系統只能在有限的領域中覆蓋有限的語言結構。

2006年推出的谷歌翻譯首次從大規模平行語料中構建統計模型;2016年谷歌翻譯轉為神經機器翻譯系統,質量得到極大提升;2020年再次更新為基于Transformer的神經翻譯系統,不再需要兩種語言的平行語料,而是采用一個巨大的預訓練網絡,通過一個特別的token指示語言類型進行翻譯。

問答任務

問答系統需要在文本集合中查找相關信息,然后提供特定問題的答案,下游有許多直接的商業應用場景,例如售前售后客戶支持等。

現代神經網絡問答系統在提取文本中存在的答案具有很高的精度,也相當擅長分類出不存在答案的文本。

分類任務

對于常見的傳統NLP任務,例如在一段文本中識別出人員或組織名稱,或者對文本中關于產品的情感進行分類(積極或消極),目前最好的系統仍然是基于LPLM的微調。

文本生成

除了許多創造性的用途之外,生成系統還可以編寫公式化的新聞文章,比如體育報道、自動摘要等,也可以基于放射科醫師的檢測結果生成報告。

不過,雖然效果很好,但研究人員們仍然很懷疑這些系統是否真的理解了他們在做什么,或者只是一個無意義的、復雜的重寫系統。

意義(meaning)

語言學、語言哲學和編程語言都在研究描述意義的方法,即指稱語義學方法(denotational semantics)或指稱理論(heory of reference):一個詞、短語或句子的意義是它所描述的世界中的一組對象或情況(或其數學抽象)。

現代NLP的簡單分布語義學認為,一個詞的意義只是其上下文的描述,Manning認為,意義產生于理解語言形式和其他事物之間的聯系網絡,如果足夠密集,就可以很好地理解語言形式的意義。

LPLM在語言理解任務上的成功,以及將大規模自監督學習擴展到其他數據模態(如視覺、機器人、知識圖譜、生物信息學和多模態數據)的廣泛前景,使得AI變得更加通用。

基礎模型

除了BERT和GPT-3這樣早期的基礎模型外,還可以將語言模型與知識圖神經網絡、結構化數據連接起來,或是獲取其他感官數據,以實現多模態學習,如DALL-E模型,在成對的圖像、文本的語料庫進行自監督學習后,可以通過生成相應的圖片來表達新文本的含義。

我們目前還處于基礎模型研發的早期,但未來大多數信息處理和分析任務,甚至像機器人控制這樣的任務,都可以由相對較少的基礎模型來處理。

雖然大型基礎模型的訓練是昂貴且耗時的,但訓練完成后,使其適應于不同的任務還是相當容易的,可以直接使用自然語言來調整模型的輸出。

但這種方式也存在風險:

1. 有能力訓練基礎模型的機構享受的權利和影響力可能會過大;

2. 大量終端用戶可能會遭受模型訓練過程中的偏差影響;

3. 由于模型及其訓練數據非常大,所以很難判斷在特定環境中使用模型是否安全。

雖然這些模型的最終只能模糊地理解世界,缺乏人類水平的仔細邏輯或因果推理能力,但基礎模型的廣泛有效性也意味著可以應用的場景非常多,下一個十年內或許可以發展為真正的通用人工智能。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 人工智能
    +關注

    關注

    1796

    文章

    47643

    瀏覽量

    240078
  • Agi
    Agi
    +關注

    關注

    0

    文章

    87

    瀏覽量

    10234
  • 自然語言處理

    關注

    1

    文章

    619

    瀏覽量

    13633

原文標題:NLP七十年!斯坦福教授Manning長文梳理:十年后的基礎模型能成AGI嗎?

文章出處:【微信號:zenRRan,微信公眾號:深度學習自然語言處理】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    臺積電新任CTO由美國斯坦福教授黃漢森出任

    業界透露,臺積電在新任CTO人選上沒有從內部拔擢,而是意外地向外借將,由在學術界擁有高度知名的美國斯坦福教授黃漢森(Philip Wong)出任。
    的頭像 發表于 08-02 11:24 ?9028次閱讀

    斯坦福開發過熱自動斷電電池

    導致起火。開發電池的斯坦福教授  在斯坦福開發的新電池中,研究人員采用聚乙烯薄膜材料,薄膜上嵌入了鎳磁粉,它會形成納米級的突起。研究人員在突起部分覆蓋石墨烯導電材料,讓電流可以從表面通過。當溫度
    發表于 01-12 11:57

    積累的編程知識在十年后將有一半沒用

    積累的編程知識在十年后將有一半沒用【導讀】:Ben Northrop 年滿 40 歲,本文是他對職業生涯的思考。他認為從長遠來看,應該多投資一些不容易過期、衰竭期較長的知識領域中。 我是一名程序員
    發表于 11-21 14:33

    關于斯坦福的CNTFET的問題

    之前下載了斯坦福2015的CNTFET VS model,是.va的文件,不知道怎么用啊,該怎么通過cadence的pspice進行仿真啊,求指點
    發表于 01-26 13:47

    效率可達離子電池倍的輕型紙電池在斯坦福誕生

    效率可達離子電池倍的輕型紙電池在斯坦福誕生       北京時間12月8日消息,據國外媒體報道,將來有一天,輕型
    發表于 12-10 10:58 ?1236次閱讀

    全球無線電源產品出貨量十年后增至10億

    全球無線電源產品出貨量十年后增至10億  根據IMS Research最新分析,全球使用無線充電技術的消費電子產品出貨量將從2009的150萬臺,增長至2019將近10億臺。
    發表于 03-01 12:18 ?760次閱讀

    一位工程師的十年工作感悟

    十年前我本科畢業,加入公司,22歲,十年后我32歲,已經過了30歲的門檻。
    的頭像 發表于 08-30 11:54 ?6242次閱讀

    李飛飛重返斯坦福大動作 布斯坦福開啟以人為中心的AI計劃

    根據HAI官網,參與學者還包括斯坦福大學語言學和計算機科學教授Chris Manning,計算機科學與電氣工程系教授William Dally,計算機科學
    的頭像 發表于 10-21 09:48 ?5163次閱讀

    斯坦福開啟以人為中心的AI計劃

    李飛飛宣布斯坦福開啟「以人為中心的 AI 計劃」(Human-Centered AI Initiative,HAI),該項目由李飛飛和斯坦福大學前教務長 John Etchemendy 共同主導,Chris Manning 也參
    的頭像 發表于 10-25 11:45 ?3840次閱讀

    十年后的網絡將支撐萬億級連接服務并具有六大特性

    2018中國SD-WAN峰會于在北京召開,江蘇省未來網絡創新研究院院長 、中國工程院院士劉韻潔先生認為十年后的網絡將支撐萬億級、人機物、全時空、安全、智能的連接服務,分享了未來網絡的發展與機遇。
    發表于 11-05 08:47 ?1526次閱讀

    預測十年后光纖傳輸系統技術:干線單波長可達Tbps 單纖可達Pbps量級

    在“CCSA下一代光傳送網產業與技術標準推進委員會(TC618 )成立大會”既“新一代光傳送網發展論壇(NGOF)2020度會議”上,中國工程院院士鄔賀銓預測:十年后相干光通信+硅光技術,干線單
    的頭像 發表于 01-04 10:54 ?2687次閱讀

    2021斯坦福關于AI的全面報告

    2021 年度的斯坦福 AI Index 報告正式發布,從七大版塊出發,探討了過去一中的 AI 總體發展情況。
    的頭像 發表于 03-12 10:23 ?2944次閱讀

    芯片能屯一堆十年后暴漲再賣掉嗎?

    何止漲 5 倍,聽說有的 MCU 都漲了幾倍。所以有人建議多囤點芯片,十年后再賣。酒越存越香,股票基金十年后也可能暴漲,芯片難不成也可以這么操作? 答案是:否! 以某個芯片的外包裝為例: 第一條寫
    的頭像 發表于 06-18 15:31 ?3892次閱讀

    GPT-4就是AGI!谷歌斯坦福科學家揭秘大模型如何超智能

    導讀谷歌研究院和斯坦福HAI的兩位專家發文稱,現在最前沿的AI模型,未來將會被認為是第一代AGI。最前沿的LLM已經用強大的能力證明,AGI即將到來!通用人工智能(
    的頭像 發表于 10-14 08:28 ?555次閱讀
    GPT-4就是<b class='flag-5'>AGI</b>!谷歌<b class='flag-5'>斯坦福</b>科學家揭秘大<b class='flag-5'>模型</b>如何超智能

    斯坦福STANFORD FS725銣鐘

    斯坦福STANFORD FS725銣鐘 SRS斯坦福FS725 10MHzRb頻率標準 ? SRS斯坦福FS72510MHzRb頻率標準FS725集成了一個銣振蕩器(SRS模型PRS1
    的頭像 發表于 12-13 15:22 ?139次閱讀
    主站蜘蛛池模板: 乌克兰内射私拍 | 色 花 堂 永久 网站 | 强行撕开衣服捏胸黄文 | 青青青青草| 亚洲高清中文字幕 | 茎身铃口调教 | 国产精品一久久香蕉国产线看 | 男女肉大捧进出全过程免费 | 精品三级在线观看 | 97国产视频 | 小p孩玩成年女性啪啪资源 小777论坛 | 亚洲国产在线精品国 | 国产福利视频在线观看福利 | 久久99AV无色码人妻蜜柚 | 大胆国模一区二区三区伊人 | 久久精品国产首叶 | 这里只有精品在线视频 | 性一交一无一伦一精一品 | 成人性生交大片免费看中文 | 亚洲视频在线免费观看 | 久久日本精品国产精品 | 日日久久狠狠8888偷偷色 | 涩里番app黄版网站 色综合伊人色综合网站中国 | 丰满人妻熟女色情A片 | 久久99精品AV99果冻传媒 | 日韩亚洲人成在线 | 暖暖的视频完整视频免费韩国 | 亚洲中久无码永久在线 | 真实农村女人野外自拍照片 | 手机在线亚洲日韩国产 | 中文字幕乱偷无码AV蜜桃 | 综合精品欧美日韩国产在线 | 大肥婆丰满大肥奶bbw肥 | 国精产品一区一区三区M | 91国偷自产一区二区三区 | 2021国产精品| 国产亚洲精品久久久999蜜臀 | 24小时日本高清免费看 | 小莹的性荡生活45章 | 亚洲精品乱码电影在线观看 | WWW国产色情在线观看APP |