色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

開關轉換時,最大效率與最小電磁干擾可以“兼得”

analog_devices ? 來源:未知 ? 2023-09-01 18:10 ? 次閱讀

開關調節器中的快速開關瞬變是有利的,因為這顯著降低了開關模式電源中的開關損耗。尤其是在高開關頻率時,可以大幅提高開關調節器的效率。但是,快速開關轉換也會帶來一些負面影響。開關轉換頻率在20MHz和200MHz之間時,干擾會急劇增加。這就使得開關模式電源開發人員必須在高頻率范圍內,在高效率和低干擾之間找到良好的折衷方案。此外,ADI提出了Silent Switcher技術,即使是極快的開關邊沿,也可能產生最小電磁輻射。

wKgaomTxuaeAKv81AABZThzJq6E380.png

圖1. 對開關模式電源進行開關轉換,在開關節點處施加輸入電壓。

圖1顯示了快速和慢速開關轉換。快速開關轉換會給鄰近電路段產生更強的干擾耦合。存在電壓突變的PCB走線可與具有高阻抗的鄰近走線產生容性耦合。存在電流突變的PCB走線可與鄰近走線產生電感耦合。通過減慢開關轉換,可將這些影響降至最低。圖2顯示了一種經驗證適用于異步開關調節器的技術。此處,兩個開關中的一個使用了肖特基二極管。將電阻與自舉電容CBOOT(提供高邊n溝道MOSFET的柵極電壓)串聯,可減慢開關的開關轉換。當無法直接調整功率MOSFET的柵極信號線時,此技巧可用于集成開關調節器。如果將開關控制器與外部MOSFET配合使用,也可將電阻插入柵極驅動走線中。電阻值通常小于100Ω。

wKgaomTxuaeAIpSGAABgC3XikZE842.png

圖2. 使用自舉電阻減慢異步降壓轉換器中的開關轉換。

但是,大多數現代開關調節器都是具有高邊和低邊有源開關的同步開關調節器。此處,在CBOOT路徑中使用電阻無法明顯減慢開關轉換。如果此處還是使用與CBOOT串聯的電阻(如圖3所示),則也將減慢高邊開關的開關轉換。但是,這可能導致低邊開關沒有完全關閉。因此,高邊開關和低邊開關可能同時瞬間打開。這將導致輸入電壓到接地之間出現破壞性短路。這一點尤為關鍵,因為開關轉換速度也受到工作溫度等參數半導體制造中的可變性的影響。因此,即使是在實驗室測試,也無法保證安全操作。

要減慢具有集成開關的同步開關調節器的開關轉換,應使用可通過內部電路直接設置開關轉換速度的同步開關調節器,例如ADI的ADP5014。在這些集成電路中,可在內部確保:在減慢開關轉換時,兩個開關不同時導通,因此也不會發生短路,并且在CBOOT路徑中都沒有電阻。

wKgaomTxuaeAFyLTAABVPnr45J4819.png

圖3. 由于高端開關轉換減慢而可能短路的同步降壓轉換器。

關于快速開關轉換,近年來有一個非常重要的創新不容忽視。ADI的Silent Switcher技術使快速開關邊沿的電磁輻射大幅降低,高達40dB(10,000倍)。因此。可開發出具有超快邊沿且僅有最小EMC問題的開關模式電源。在大多數情況下,Silent Switcher器件無需為了減少EMI而降低開關轉換速度。通過Silent Switcher技術,在很大程度上消除了在最大轉換效率和最小電磁干擾之間進行權衡的難題。wKgaomTxuaeAC-wjAACKAR9sZ48900.gif ?查看往期內容↓↓↓


原文標題:開關轉換時,最大效率與最小電磁干擾可以“兼得”

文章出處:【微信公眾號:亞德諾半導體】歡迎添加關注!文章轉載請注明出處。


聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 亞德諾
    +關注

    關注

    6

    文章

    4680

    瀏覽量

    15979

原文標題:開關轉換時,最大效率與最小電磁干擾可以“兼得”

文章出處:【微信號:analog_devices,微信公眾號:analog_devices】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    電磁干擾電磁輻射的區別 EMI電磁干擾與電力系統的關系

    )與電磁輻射的區別 定義 電磁干擾(EMI)是指由于電磁能量的傳播,導致設備或系統性能下降的現象。它通常是由外部電磁場引起的,這些場可能來自
    的頭像 發表于 11-20 14:51 ?449次閱讀

    電磁干擾的防護技術 EMI電磁干擾對通信設備的影響

    電磁干擾的防護技術 電磁干擾(EMI)是指電子設備或系統在電磁場中相互影響而產生的不可預期的問題。為了有效防護
    的頭像 發表于 11-20 14:46 ?857次閱讀

    EMI電磁干擾的常見來源 電磁干擾對電子設備的影響

    電磁干擾的常見來源及對電子設備的影響 電磁干擾(EMI)是電子設備在運行過程中不可避免會遇到的問題。EMI的來源廣泛,它們可以是自然現象,也
    的頭像 發表于 11-20 14:41 ?732次閱讀

    EMI電磁干擾如何減少

    減少EMI(電磁干擾)是電子電路和系統設計中非常重要的一項任務,以下是一些減少EMI的有效方法: 一、屏蔽 屏蔽是用來減少電磁場向外或向內穿透的措施,可以分為靜電屏蔽、
    的頭像 發表于 11-20 14:40 ?763次閱讀

    如何減少逆變器中的電磁干擾

    本文要點逆變器是用于將輸入直流電轉換為輸出交流電的一種電路。在高頻開關操作時,電源開關會產生較大的dv/dt和di/dt值,從而導致逆變器中產生電磁
    的頭像 發表于 09-21 08:04 ?3103次閱讀
    如何減少逆變器中的<b class='flag-5'>電磁</b><b class='flag-5'>干擾</b>

    電磁干擾是怎么產生的

    的基本概念 電磁干擾是指由于電磁場的作用,導致電子設備或系統的性能下降或功能失效的現象。電磁干擾可以
    的頭像 發表于 09-02 17:28 ?1382次閱讀

    電磁干擾的來源和類型

    電磁干擾(Electromagnetic Interference,簡稱EMI)是一種電氣現象,它指的是電子設備、系統或網絡在電磁環境中受到的任何不利影響,這種影響會干擾其正常性能的
    的頭像 發表于 08-26 10:25 ?1612次閱讀

    電磁干擾訓練系統原理是什么

    智慧華盛恒輝電磁干擾訓練系統的原理主要基于電磁干擾(EMI)的基本原理,即利用電磁波對電子設備或系統產生的
    的頭像 發表于 07-22 16:34 ?383次閱讀

    EMI電磁干擾廠家:如何專業解決電磁干擾問題

    深圳比創達電子EMC|EMI電磁干擾廠家:如何專業解決電磁干擾問題
    的頭像 發表于 05-13 11:28 ?487次閱讀
    EMI<b class='flag-5'>電磁</b><b class='flag-5'>干擾</b>廠家:如何專業解決<b class='flag-5'>電磁</b><b class='flag-5'>干擾</b>問題

    淺談電磁干擾系統

    任何在傳導或者在有電磁場伴隨著電壓、電流的作用下而產生會降低某個裝置、設備或系統的性能,還有可能對生物或者物質產生不良影響的電磁現象。它通常可以分為傳導干擾和輻射
    的頭像 發表于 05-10 18:09 ?960次閱讀

    電磁干擾系統有哪些

    智慧華盛恒輝電磁干擾系統主要包括以下幾種類型: 主動電磁干擾系統:這類系統主動產生電磁干擾信號,
    的頭像 發表于 05-10 18:01 ?1040次閱讀

    電磁干擾系統技術有哪些

    智慧華盛恒輝電磁干擾(EMI)是指電磁波對電子設備和通信系統造成的干擾。為了降低電磁干擾對傳輸方
    的頭像 發表于 05-10 17:53 ?655次閱讀

    美軍電磁干擾系統

    智慧華盛恒輝電磁干擾系統是一個綜合且高度先進的體系,旨在在各種作戰環境中提供有效的電磁干擾和防護能力。 智慧華盛恒輝電磁
    的頭像 發表于 05-10 17:26 ?462次閱讀

    EMI電磁干擾:EMI電磁干擾的識別與解決之道

    深圳比創達EMC|EMI電磁干擾:EMI電磁干擾的識別與解決之道
    的頭像 發表于 04-25 11:17 ?894次閱讀
    EMI<b class='flag-5'>電磁</b><b class='flag-5'>干擾</b>:EMI<b class='flag-5'>電磁</b><b class='flag-5'>干擾</b>的識別與解決之道

    開關電源產生電磁干擾的原因有哪些

    開關電源產生電磁干擾(EMI)的原因主要與其工作方式有關。開關電源通過高頻開關來控制能量的轉換
    的頭像 發表于 02-16 17:11 ?2881次閱讀
    主站蜘蛛池模板: 果冻传媒在线观看完整版免费| 色中色入口2015| 免费人成在线观看网站视频| 欧美日韩免费播放一区二区| 香蕉久久夜色精品国产小优| 91精品欧美一区二区三区| 国产精品亚洲专一区二区三区| 麻豆啊传媒app黄版破解免费| 无码专区无码专区视频网网址| 91久久99久91天天拍拍| 韩国演艺圈悲惨在线| 中文字幕va一区二区三区| 亚洲一区自拍高清亚洲精品| YELLOW视频在线观看免费版高清| 九九久久精品| 性色少妇AV蜜臀人妻无码| a免费在线观看视频| 最新2017年韩国伦理片在线| 99re久久热免费视频| 极品少妇高潮啪啪AV无码吴梦梦| 久久re热在线视频精69| 肉动漫3D卡通无修在线播放| 99久久国内精品成人免费| 久久精品中文闷骚内射| 性欧美video| 国产成人精品视频频| 热综合一本伊人久久精品| 我与旗袍老师疯狂床震| 爱穿丝袜的麻麻3d漫画免费| 奶头好翘是不是想要了| 最新高清无码专区在线视频| 久久大胆视频| 在线亚洲色拍偷拍在线视频| 久久精品一区二区免费看| 一个人在线观看免费高清视频| www.99在线| 吉吉影音先锋av资源网| 亚洲国产精品久久无套麻豆| HEYZO无码中文字幕人妻| 免费国产在线观看| 91九色麻豆|