色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

基于GAN的零缺陷樣本產品表面缺陷檢測

QQ475400555 ? 來源:機器視覺沙龍 ? 2023-06-26 09:49 ? 次閱讀

導讀

缺陷檢測是工業生產過程中的關鍵環節,其檢測結果的好壞直接影響著產品的質量。而在現實場景中,但產品瑕疵率非常低,甚至是沒有,缺陷樣本的不充足使得需要深度學習缺陷檢測模型準確率不高。如何在缺陷樣本少的情況下實現高精度的檢測呢?目前有兩種方法,一種是小樣本學習,另一種是用GAN。本文將介紹一種GAN用于無缺陷樣本產品表面缺陷檢測。

深度學習在計算機視覺主流領域已經應用的很成熟,但是在工業領域,比如產品表面缺陷檢測,總感覺沒有發揮深度學習的強大能力,近幾年表面缺陷的 相關研究主要是集中在各種借鑒主流神經網絡框架,從CNN到YOLO,SSD,甚至到語義分割的FCN相關論文,通過一些技術,對框架進行輕量化,對缺陷進行分類或檢測。不過,逃不出一個問題:一定要有缺陷樣本可供訓練,而且數量不能太少!當然,也有一些課題組使用稀疏編碼、字典學習、稀疏自編碼等對表面缺陷進行檢測,這類方法很有局限性,主要針對那些有周期性背景紋理的圖像,比如絲織品,印刷品等。國內外很多課題組、工業軟件公司都想開發出一些切合實際應用的算法軟件,在缺陷檢測領域,比較好的公司有:VIDI、Halcon等,聽說海康威視也在搞工業產品方便的算法研究。

作者提出只依據已有的正常表面圖像樣本,通過一定的技術手段對缺陷樣本進行檢測,很好的將最近研究火熱的GAN應用于框架中,這一年,課題組的老師也一直討論這種方法的可行性,缺陷的檢測要不要有缺陷樣本,從稀疏自編碼,小樣本學習再到計算機視覺研究熱點之一的零樣本學習,得出結論:大多數工業產品表面缺陷檢測是需要缺陷樣本或者人為制作的缺陷樣本,論文雖然是沒有直接使用生產線上的缺陷樣本,但是通過算法人為的產生了缺陷樣本,并很好的融合和GAN在圖像修復領域的強大能力,整個框架的設計很巧妙。

文章思路:論文的整體思路就是GAN在圖像修復和重建方便具有很強大的能力,通過人為的去在正常樣本上“隨意”添加一些缺陷,訓練階段讓GAN去學習一個可以修復這些缺陷區域的網絡,檢測階段時,輸入一個真實缺陷樣本,訓練好的GAN會對其進行修復,再基于LBP可完成缺陷檢測。整個算法框架不需要真實的缺陷樣本和手工標簽,但是在框架中,人為的去產生(比如PS)一些缺陷區域。

通俗說:

作者利用GAN在圖像修復(重建)上的能力,在工業現場收集一些正常(無缺陷)樣本,人工PS一些缺陷,比如線條、斑點等。

訓練時,將PS的人工制作的缺陷圖像和原圖像做輸入樣本訓練GAN,得到一個具有圖像修復重建能力的網絡。

測試時,直接使用訓練好的GAN對采集到的圖像進行重建修復,如果樣本中中有缺陷區域,缺陷區域按照網絡設計,肯定需要修復,將修復后的圖像和原缺陷圖像使用LBP找出顯著差異區域即為缺陷區域。

01主要內容

論文的主體框架思想是基于GAN網絡的結構。GAN 主要包括了兩個部分,即生成器 G與判別器 D。生成器主要用來學習真實圖像分布從而讓自身生成的圖像更加真實,以“騙過”判別器。判別器則需要對接收的圖片進行真假判別。在整個過程中,生成器努力地讓生成的圖像更加真實,而判別器則努力地去識別出圖像的真假,這個過程相當于一個博弈過程,隨著時間的推移,生成器和判別器在不斷地進行對抗,最終兩個網絡達到了一個動態均衡:生成器生成的圖像接近于真實圖像分布,而判別器識別不出真假圖像,對于給定圖像的預測為真的概率基本接近 0.5(這段話從李宏毅老師那引用的,致敬李老師)。

訓練階段

在訓練階段,模型采用一些圖像處理技術,人為的在正常樣本圖像上產生一些缺陷(示意圖中的紅色框模塊),使用由自編碼器構成的G模塊進行缺陷修復學習,學習的目標是與正常樣本之間的L1范數最小,通過一定數量的樣本訓練可以獲得有缺陷修復能力的G模塊。GAN用于圖像修復的一些資料可以參考[3][4],當然也可以參考論文里的參考文獻。

wKgZomSY70CAcLUyAAByaxhQeyg107.png

訓練階段

測試階段

在測試階段,將上步驟訓練好的G模塊作為測試階段的圖片修復模塊,對于輸出的圖像樣本,假如存在缺陷區域,通過修復模塊G將得到修復后的圖像,與原缺陷樣本圖像一起作為LBP算法的輸入,通過LBP算法對其缺陷區域進行精確定位。

wKgaomSY70CADFPkAAA6PnlGHqM878.png

測試階段

02其他細節

2.1缺陷生成

在實際訓練中,論文作者手工生成一些缺陷樣本,如圖3所示,訓練網絡自動修復缺陷。另外作者也通過一些技術進行了樣本的擴充,比如加入高斯噪聲、隨機resize大小等。

wKgaomSY70CAUdbuAABujfy4Ny0630.jpg

缺陷生成

3.2缺陷圖像重建

缺陷圖像重建部分主要的作用是:缺陷圖像重建后盡量和正常樣本一樣,作者在這部分在文獻[5][6]基礎上進行框架修改的,比如使用L1 distance作為衡量重建差異的目標函數。

wKgZomSY70CAJm5mAAAfA-ITUjo157.png

然后實驗中作者又發現只使用L1不行,圖像邊緣等細節可能會衡量不準確,又加入GAN loss來提升網絡的重建效果。

wKgaomSY70CAD_-DAAAvlAjEoKQ333.png

最后,得到了下面目標函數。

wKgaomSY70CAR8aGAAAsb0VHtBQ382.png

2.3缺陷檢測

因為使用GAN修復后的圖片和原始缺陷樣本圖片之間在像素級的細節上有一些差異,作者使用了前幾年在人臉領域應用比較好的LBP算法進行缺陷區域的檢測,這里不介紹算法的細節,示意圖如下。

wKgZomSY70CAaTfXAAAzKaEOm6s999.png

03實驗

文章對DAGM 2007數據集和織物密集圖像進行了驗證實驗。實驗表明,提出的GAN+LBP算法和有足夠訓練樣本的監督訓練算法具有較高的檢測準確率。實驗使用兩種類型的數據集,4.1是印花紋表面,4.2是織物表面。

4.1Texture surface

wKgZomSY70CADV1hAABz-9VemK4622.png

測試樣本

wKgaomSY70CAAuL9AAA_58pxVrY043.png

結果

wKgZomSY70CAUAvAAAAm1OuVmz0506.jpg

a.原始圖像,b.修復圖像,c.論文方法,d. FCN方法,e.真實標簽

3.2 Fabric Picture

實驗中缺陷樣本的類型有五種。實驗樣本按背景分有三類,每類包含5個缺陷樣本,25個正常樣本。

wKgaomSY70CARFsHAABmJjPR_UU928.png

測試樣本

wKgaomSY70CATKgtAABLoAMez8A829.png

結果

wKgZomSY70CAb9J3AAB_Z0RyJoM016.jpg

a.原始圖像,b.修復圖像,c.論文方法,d. FCN方法,e.真實標簽

審核編輯:湯梓紅
聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 神經網絡
    +關注

    關注

    42

    文章

    4772

    瀏覽量

    100801
  • GaN
    GaN
    +關注

    關注

    19

    文章

    1936

    瀏覽量

    73522
  • 缺陷檢測
    +關注

    關注

    2

    文章

    142

    瀏覽量

    12235
收藏 人收藏

    評論

    相關推薦

    機器視覺表面缺陷檢測技術

    傳統的工業生產制造,由于科學技術的限制仍然主要采用人工檢測的方法去檢測產品表面缺陷,這種方法由于人工的限制和技術的落后,不僅
    發表于 01-20 10:29

    機器視覺有助于解決表面缺陷

    檢測產品表面缺陷,例如變色,灼傷,裂縫和劃痕,對于人類或機器視覺來說是一項艱巨的任務。這些缺陷可能具有隨機形狀和低對比度,并且經常被
    發表于 08-12 10:41

    [轉]產品表面缺陷檢測

    ` 在工業制造過程中,總會有各種生產缺陷。以前大多數的產品檢測都是用肉眼檢查的,隨著機器視覺技術的發展,使用機器代替人眼檢測已成為未來的發展趨勢。機器視覺檢測技術可用于
    發表于 08-07 16:40

    機器視覺檢測系統在薄膜表面缺陷檢測的應用

    用于流水線工業產品的二維缺陷、定位及尺寸檢測,大幅提高了生產效率。四元數視覺檢測定位系統使用圖像傳感器替代人眼,100%精確檢測物體
    發表于 10-30 16:15

    表面檢測市場案例,SMT缺陷檢測

    本帖最后由 我愛方案網 于 2022-11-8 14:29 編輯 工業產品表面缺陷產品的美感、舒適性和性能都有負面影響,因此生產企業對產品
    發表于 11-08 14:28

    表面缺陷檢測系統是什么,它的作用又是什么

    在機器視覺行業中,有一種叫表面缺陷檢測系統的東西,相信很多朋友都不是很了解。 這個系統到底有什么作用,其實表面缺陷
    發表于 10-23 12:00 ?1604次閱讀

    工業相機:表面缺陷檢測系統的優勢

    如今在生產技術企業中,為了保障產品的質量,在出廠前必須要對產品進行嚴格的質量檢測工作,目前,表面缺陷檢測
    的頭像 發表于 11-17 16:02 ?2937次閱讀

    表面缺陷檢測系統是什么,它的應用優勢是什么

    如今在生產技術企業中,為了保障產品的質量,在出廠前必須要對產品進行嚴格的質量檢測工作,目前,表面缺陷檢測
    發表于 11-20 12:15 ?991次閱讀

    GAN用于(無缺陷樣本產品表面缺陷檢測

    1.前言 深度學習在計算機視覺主流領域已經應用的很成熟,但是在工業領域,比如產品表面缺陷檢測,總感覺沒有發揮深度學習的強大能力,近幾年表面
    的頭像 發表于 01-03 11:53 ?3236次閱讀
    <b class='flag-5'>GAN</b>用于(無<b class='flag-5'>缺陷</b><b class='flag-5'>樣本</b>)<b class='flag-5'>產品</b><b class='flag-5'>表面</b><b class='flag-5'>缺陷</b><b class='flag-5'>檢測</b>

    表面缺陷檢測的原理是什么,它有哪些功能

    、報表統計及產品分級處理等。它廣泛應用于新聞紙、特種紙、銅版紙、白板紙、美術紙、文化紙、香煙紙等產品表面缺陷檢測
    發表于 04-01 10:16 ?1336次閱讀

    關于正樣本表面缺陷檢測

    背? 景 表面缺陷檢測在工業生產中起著非常重要的作用,基于機器視覺的表面缺陷檢測可以極大的提升工
    的頭像 發表于 05-29 10:23 ?3322次閱讀
    關于正<b class='flag-5'>樣本</b>的<b class='flag-5'>表面</b><b class='flag-5'>缺陷</b><b class='flag-5'>檢測</b>

    什么是機器視覺表面缺陷檢測

    工業產品表面缺陷產品的美觀度、舒適度和使用性能等帶來不良影響,所以生產企業對產品表面
    的頭像 發表于 06-15 16:30 ?2540次閱讀

    絲印產品表面缺陷檢測系統介紹

    產品表面絲印缺陷檢測系統適用于對產品外觀有嚴格要求的絲印產品外觀不良的
    發表于 08-19 16:32 ?868次閱讀

    如何在缺陷樣本少的情況下實現高精度的檢測

    樣本少的情況下實現高精度的檢測呢?目前有兩種方法,一種是小樣本學習,另一種是用GAN。本文將介紹一種GAN用于無
    的頭像 發表于 06-26 09:54 ?1586次閱讀
    如何在<b class='flag-5'>缺陷</b><b class='flag-5'>樣本</b>少的情況下實現高精度的<b class='flag-5'>檢測</b>

    工業產品表面缺陷檢測方法研究

    制造業的全面智能化發展對工業產品的質量檢測提出了新的要求。本文總結了機器學習方法在表面缺陷檢測中的研究現狀,
    的頭像 發表于 08-17 11:23 ?1060次閱讀
    工業<b class='flag-5'>產品</b><b class='flag-5'>表面</b><b class='flag-5'>缺陷</b><b class='flag-5'>檢測</b>方法研究
    主站蜘蛛池模板: 久久精品亚洲热综合一本| 国产精品亚洲精品爽爽| 观看免费做视频| 男人和女人一级黄色大片| 一区二区三区毛AAAA片特级| 国产午夜精品不卡观看| 手机在线免费| 国产成人精品三级在线| 全彩无翼污之邪恶女教师| 7m凹凸国产刺激在线视频| 九九九九九热| 亚洲欧美日韩在线观看一区二区三区 | 第一次破女初国产美女| 日本高清免费在线| 床上色APP下载免费版| 日本视频久久| 丰满少妇发泄14p| 日日日操操操| 国产91综合| 小SB几天没做SAO死了H| 国产在线观看香蕉视频| 亚洲日韩欧美国产中文在线| 好大太快了快插穿子宫了| 亚洲三级在线观看| 老阿姨才是最有V味的直播| 99久久国产综合精品| 精品一区二区三区免费毛片 | 伊人大香线蕉精品在线播放| 久久99精品国产99久久6男男| 樱花草在线观看影院| 美女扒开腿让男生桶免费看动态图| 69日本人XXXX护士HD| 青娱乐极品视觉盛宴国产视频| 郭德纲于谦2012最新相声| 亚洲高清在线mv| 久久精品国产亚洲AV忘忧草蜜臀 | 给个男人都懂的网址2019| 亚洲高清视频一区| 伦理片在线线手机版韩国免费观看 | 无码国产伦一区二区三区视频 | 国产色综合久久无码有码|