I2C接口是由數據線SDA和時鐘線SCL構成,在標準模式下通信速度可達到100kHz,快速模式下則可以達到400kHz,增強快速模式可達到1MHz。一幀數據傳輸從開始信號開始,在結束信號后停止,在收到開始信號后總線被認為是繁忙的,當收到結束信號后,總線被認為再次空閑。I2C接口具有主機和從機模式、多主機功能、可編程建立和保持時間、時鐘延展功能、DMA存取數據、支持SMBus 2.0協議等特點。圖1. I2C框圖
I2C接口通信
主機通信流程
主機通信初始化1. 主機時鐘初始化在啟動外設(I2CEN)之前,必須先設置I2Cx_CLKCTRL寄存器的各個位用以配置I2C主時鐘。
DIV[7:0]:I2C時鐘分頻;
SDAD[3:0]:數據保持時間(tHD;DAT)
SCLD[3:0]:數據建立時間(tSU;DAT)
SCLH[7:0]:SCL高電平時間
SCLL[7:0]:SCL低電平時間
該寄存器的配置可以使用Artery_I2C_Timing_Configuration時鐘配置工具計算,見第三章節。低電平控制:當檢測到SCL總線為低電平時,內部SCLL計數器開始計數,當計數值達到SCLL值時,釋放SCL線,SCL線變為高電平。高電平控制:當檢測到SCL總線為高電平時,內部SCLH計數器開始計數,當計數值達到SCLH值時,拉低SCL線,SCL線變為低電平,當在高電平期間,如果被外部總線拉低,那么內部SCLH計數器停止計數,并開始低電平計數,這為時鐘同步提供了條件。圖2. 主機時鐘的產生2. 主機通信初始化在啟動通訊前須先設定I2C_CTRL2寄存器中的幾項參數:1) 設置傳輸字節數
≤255字節
配置I2C_CTRL2的RLDEN=0,關閉重載模式
配置I2C_CTRL2的CNT[7:0]=N
>255字節
配置I2C_CTRL2的RLDEN=1,使能重載模式
配置I2C_CTRL2的CNT[7:0]=255
剩余傳輸字節數N=N-255
2) 設置傳輸結束模式
ASTOPEN=0:軟件結束模式,當數據傳輸完成后,I2C_STS的TDC標志置1,軟件設置GENSTOP=1或者GENSTART=1,發送STOP條件或者START條件。
ASTOPEN=1:自動結束模式,當數據傳輸完成后,自動發送STOP條件。
3) 設置從機地址
設置尋址的從機地址值(I2C_CTRL2的SADDR)
設置從機地址模式(I2C_CTRL2的ADDR10)
ADDR10=0:7位地址模式
ADDR10=1:10位地址模式
4) 設置傳輸方向(I2C_CTRL2的DIR)
DIR=0:主機接收數據
DIR=1:主機發送數據
5) 開始傳輸設置I2C_CTRL2的GENSTART=1,主機開始在總線上發送START條件和從機地址。3. 主機10 bits尋址的特殊時序初始化在10位地址傳輸模式下,I2C_CTRL2的READH10用于產生特殊時序,當READH10=1時,支持如下傳輸序:主機先發送數據給從機,然后再從從機讀取數據,傳輸時序圖如下圖所示:圖3. 10位地址的讀訪問READH10=1主機在軟件結束模式(ASTOPEN=0)下,發送數據到從機,當數據發送完成后設置READH10=1,然后再從從機接收數據。圖4. 10位地址的讀訪問READH10=0主機通信初始化軟件接口主機通信初始化所用到的軟件接口通過獨立的函數接口實現,如下:i2c_init函數三個參數分別為:所使用的I2C、數字濾波值和主機時鐘配置值。i2c_transmit_set 函數用于初始化通信參數,包括:所使用的I2C、從機地址、傳輸字節數、停止條件產生模式和起始條件產生模式。i2c_addr10_mode_enable函數用于使能10位地址模式。i2c_addr10_header_enable函數用于使能10位地址頭讀取時序,即主機發送完整的10位從機地址讀序列或主機只發送10位地址的前7位。主機發送流程1) I2C_TXDT數據寄存器為空,I2C_STS的TDIS=1;2) 向TXDT數據寄存器寫入數據,數據開始發送;3) 重復1、2步驟直到發送CNT[7:0]個數據;4) 如果此時I2C_STS的TCRLD=1(重載模式),分為以下兩種情況:
- 剩余字節數N>255:向CNT寫入255,N=N-255,TCRLD被自動清0,傳輸繼續;
- 剩余字節數N≤255:關閉重載模式(RLDEN=0),向CNT寫入N,TCRLD被自動清0,傳輸繼續。
5) 結束時序
- 停止條件產生:軟件結束模式(ASTOPEN=0):此時I2C_STS的TDC置1,設置GENSTOP=1產生STOP條件;自動結束模式(ASTOPEN=1):自動產生STOP條件。
- 等待產生STOP條件,當STOP條件產生時,I2C_STS的STOPF置1,將I2C_CLR的STOPC寫1,清除STOPF標志,傳輸結束。
圖5. I2C主機發送流程圖圖6. I2C主機發送時序圖主機發送流程軟件接口主機發送通過獨立的函數接口實現,如下:i2c_master_transmit函數為i2c_application.c文件所提供的應用層接口函數,參數包括:I2C結構體指針、從機地址、發送數據指針、發送數據字節數和函數超時時間。注:此函數為Artery所提供的標準主機發送函數。用戶也可根據前述主機發送流程,自行編寫主機發送函數。
主機接收流程1) 當收到數據后,RDBF=1,讀取RXDT數據寄存器,RDBF被自動清零;2) 重復步驟2直到接收CNT[7:0]個數據;3) 如果此時I2C_STS的TCRLD=1(重載模式),分為以下兩種情況:
- 剩余字節數N>255:向CNT寫入255,N=N-255,TCRLD被自動清0,傳輸繼續;
- 剩余字節數N≤255:關閉重載模式(RLDEN=0),向CNT寫入N,TCRLD被自動清0,傳輸繼續。
4) 當在接收到最后一個字節時,主機會自動發送一個NACK。5) 結束時序
- 停止條件產生:軟件結束模式(ASTOPEN=0):此時I2C_STS的TDC置1,設置GENSTOP=1產生STOP條件;自動結束模式(ASTOPEN=1):自動產生STOP條件。
- 等待產生STOP條件,當STOP條件產生時,I2C_STS的STOPF置1,將I2C_CLR的STOPC寫1,清除STOPF標志,傳輸結束。
圖7. I2C主機接收流程圖圖8. I2C主機接收時序圖主機接收流程軟件接口主機接收通過獨立的函數接口實現,如下:i2c_master_receive函數為i2c_application.c文件所提供的應用層接口函數,參數包括:I2C結構體指針、從機地址、接收數據指針、接收數據字節數和函數超時時間。注:此函數為Artery所提供的標準主機接收函數。用戶也可根據前述主機接收流程,自行編寫主機接收函數。
從機通信流程
從機通信初始化
1. 從機地址配置
每個I2C從設備可同時支持2個從設備地址,由OADDR1和OADDR2指定
I2C_OADDR1
通過ADDR1EN使能
通過ADDR1MODE配置為7位(默認)或10位地址
I2C_OADDR2
通過ADDR2EN使能
固定7位地址模式
可通過ADDR2MASK[2:0]來在進行地址匹配比較時屏蔽掉0~7個LSB地址位
ADDR2MASK=0表示7位地址中的每一位都要參與匹配比較
ADDR2MASK=7表示任何非保留地址的7位地址都會被該從設備應答
2. 從機地址匹配當I2C啟用的地址選中匹配時,ADDRF中斷狀態標志會被置1,如果ADDRIEN位為1,就會產生一個中斷。如果兩個從地址都使能,在地址匹配產生ADDR中斷時,可以查看狀態寄存器中的ADDR[6:0]來得知是OADDR1還是OADDR2被尋址了。3. 從機字節控制模式(通常SMBus模式下才使用)從設備可以對每個收到的字節進行應答控制。所需配置:SCTRL=1&RLDEN=1&STRETCH=0&CNT≥1從機字節控制流程:1) 每收到一個字節TCRLD置位,時鐘延展于第8和第9個脈沖之間2) 軟件讀取RXDT中的值,并決定是否置位ACK3) 軟件重裝載CNT=1來停止時鐘延展4) 應答或非應答信號在第9個脈沖時刻出現在總線上注意:置位SCTRL時,必須開啟時鐘延展,即STRETCH=0CNT可以是大于1的值,來實現多個字節以自動ACK接收完畢后再啟動應答控制,從設備發送時推薦關閉SCTRL,此時無需字節應答控制。
從機通信初始化軟件接口從機通信初始化所用到的軟件接口通過獨立的函數接口實現,如下:i2c_own_address1_set函數用于配置OADDR1地址模式以及ADDR1地址值。i2c_own_address2_set函數用于配置ADDR2地址值以及ADDR2屏蔽位。i2c_own_address2_enable函數用于使能ADDR2地址。i2c_slave_data_ctrl_enable函數用于使能從機字節控制模式。i2c_clock_stretch_enable函數用于使能從機時鐘延展功能。i2c_reload_enable函數用于使能發送數據重載模式。
從機發送流程1) 響應主機地址,匹配時回復ACK;2) TXDT為空時,置位TDIS,從設備寫入發送數據;3) 每發送一個字節會收到ACK,且置位TDIS;4) 如果收到NACK位:
- 置位NACKF,產生中斷;
- 從設備自動釋放SCL和SDA(以便主設備發送STOP或RESTART);
5) 如果收到STOP位:
- 置位STOPF,產生中斷;
當從機發送開啟時鐘延展(STRETCH=0)時,在等待ADDRF標志時和發送前一個數據的第9個時鐘脈沖后,會把TXDT中的數據拷貝到移位寄存器中,如果此時TDIS還是置位,表示TXDT沒有寫進待發送數據,將發生時鐘延展,如下流程圖:圖9. I2C從機發送流程圖需要注意的是,在時鐘延展關閉(STRETCH=1)的情況下,如果在將要傳輸數據的第一個Bit位開始發送之前,也就是SDA邊沿產生之前,如果數據還未寫入TXDT數據寄存器,那么會發生欠載錯誤,此時I2C_STS的OUF將會置1,并將0xFF發送到總線。為了能及時的寫入數據,可以在通信開始前,先將數據寫入到DT寄存器:軟件先將TDBE置1,目的是為了清空TXDT寄存器的數據,然后將第一個數據寫入TXDT寄存器,此時TDBE清零。圖10. I2C從機發送時序圖從機發送流程軟件接口從機發送通過獨立的函數接口實現,如下:i2c_slave_transmit函數為i2c_application.c文件所提供的應用層接口函數,參數包括:I2C結構體指針、發送數據指針、發送數據字節數和函數超時時間。注:此函數為Artery所提供的標準從機發送函數。用戶也可根據前述從機發送流程,自行編寫從機發送函數。從機接收流程1) 當收到數據后,RDBF=1,讀取RXDT數據寄存器,RDBF被自動清零;2) 重復步驟2直到所有數據接收完成;3) 等待收到STOP條件,當收到STOP條件時,I2C_STS的STOPF置1,將I2C_CLR的STOPC寫1,清除STOPF標志,傳輸結束。圖11. I2C從機接收流程圖圖12. I2C從機接收時序圖
從機接收流程軟件接口從機接收通過獨立的函數接口實現,如下:i2c_slave_receive函數為i2c_application.c文件所提供的應用層接口函數,參數包括:I2C結構體指針、接收數據指針、接收數據字節數和函數超時時間。注:此函數為Artery所提供的標準從機接收函數。用戶也可根據前述從機接收流程,自行編寫從機接收函數。
I2C配置工具
功能簡介
I2C配置工具Artery_I2C_Timing_Configuration.exe可以實現對主機和從機的時鐘、數字濾波、模擬濾波配置。
資源準備
1) 軟件環境Artery_I2C_Timing_Configuration.exe圖13. Artery I2C Timing Configuration
使用步驟
1) 選擇芯片型號選擇當前使用的芯片型號,例如可以選擇AT32F425。2) 選擇設備模式
Master:主模式,I2C作為主機;
Slave:從模式,I2C作為從機。
3) 選擇I2C速度模式
Standard-mode:標準模式,范圍0~100kHz;
Fast-mode:快速模式,范圍0~400kHz;
Fast-mode Plus:增強快速模式,范圍0~1000kHz。
4) 設置I2C速度(單位kHz)根據實際需求設置I2C通信速度,例如需要通信速度為10kHz,那么這里設置為10。5) 設置I2C時鐘源頻率(單位kHz)根據實際使用的I2C時鐘源頻率來配置,例如AT32425 I2C時鐘源為PCLK1,當AT32425主頻為144MHz,APB1為144MHz時,這里設置為144000。6) 模擬濾波使能
On:打開;
Off:關閉。
模擬濾波使能后,將過濾50ns以下的脈沖。7) 數字濾波(范圍0~15)數字濾波時間=數字濾波值xTI2C_CLK;其中TI2C_CLK=1/I2C時鐘源頻率。當值為0時,數字濾波關閉,當值>0時將過濾小于數字濾波時間的脈沖。8) 上升時間(tr單位ns)SCL和SDA總線的上升沿,如圖18所示。I2C協議中規定了在標準模式(Standard-mode)、快速模式(Fast-mode)、增強快速模式(Fast-mode Plus)下的范圍,詳情請參照表1。上升時間和上拉電阻的阻值關系很大,上拉電阻越小,上升時間越短,可以支持的通信速度就越快,但是功耗也越高。表2中給出了一些常用上拉電阻阻值所對應的上升沿時間,實際可能會因為總線掛的設備數量、布線等差異而有所不同,僅供參考。9) 下降時間(tf單位ns)SCL和SDA總線的下降沿,如圖18所示。I2C協議中規定了在標準模式(Standard-mode)、快速模式(Fast-mode)、增強快速模式(Fast-mode Plus)下的范圍,詳情請參照表1。圖14. 上升沿(tr)下降沿(tf)規范表1. I2C時間規范表2. 常用上拉電阻阻值的tr、tf參考值(VDD=3.3V)注:該值是總線上連接兩片AT32MCU,一個作為主機,一個作為從機測試出來的值,實際可能會因為總線掛的設備數量、布線等差異而有所不同。10) 產生代碼點擊產生代碼,上訴配置的值,將會以代碼的形式產生出來,如下圖紅框所示,只需要將右側輸出的代碼替換到自己的程序即可。圖15. 代碼產生
關于雅特力雅特力科技于2016年成立,是一家致力于推動全球市場32位微控制器(MCU)創新趨勢的芯片設計公司,擁有領先高端芯片研發技術、完整的硅智財庫及專業靈活的整合經驗,分別在重慶、深圳、蘇州、上海、臺灣設有研發、銷售及技術支持分部。
雅特力堅持自主研發,以科技創新引領智慧未來,專注于ARM Cortex-M4/M0+的32位微控制器研發與創新,提供高效能、高可靠性且具有競爭力的產品。全系列產品采用55nm先進工藝,通過ISO 9001質量管理體系認證,締造M4業界最高主頻288MHz運算效能。自2018年正式對外銷售至今,累積了相當多元的終端產品成功案例,廣泛地覆蓋工控、電機、車載、消費、商務、5G及物聯網等領域,助力客戶實現產業升級。同時與21ic、立創商城等眾多第三方平臺建立合作關系,布局天貓線上零售渠道,以帶動在地研發動能,提供及時恰當的服務與技術支持,共同打造國內一流產業生態系!
-
雅特力
+關注
關注
0文章
160瀏覽量
8074 -
AT32
+關注
關注
1文章
115瀏覽量
2114
發布評論請先 登錄
相關推薦
評論