色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

基于AX650N部署SegFormer

愛芯元智AXERA ? 來源:愛芯元智AXERA ? 2023-06-20 16:37 ? 次閱讀

背景

語義分割(Semantic Segmentation)是計算機視覺中的一項基本任務。與單張圖像分類任務相比,語義分割相當于是像素級別上的分類任務。語義分割為許多下游應用特別是近幾年來的智能駕駛技術的落地提供了可能。

本文將簡單介紹SegFormer的基本原理,同時指導如何導出ONNX模型,并將其部署在優秀的端側AI芯片AX650N上,希望能給行業內對邊緣側/端側部署Transformer模型的愛好者提供新的思路。

SegFormer介紹

SegFormer的論文中提出了一個簡單、高效的語義分割方案,它將Transformers與輕量級多層感知(MLPs)解碼器結合起來。SegFormer有兩個吸引人的特點:

1SegFormer包含一個新的層次結構的Transformer編碼器,輸出多尺度特征。它不需要位置編碼,這樣就不用對位置編碼做插值。

2SegFormer避免了復雜的解碼器。所提出的MLP解碼器從不同的層聚集信息,從而結合Local Attention和Global Attention來呈現強大的表示。這種簡單而輕量級的設計是用Transformer高效地做分割的關鍵。

論文中擴展了上述方案,得到了一系列不同大小型號的模型,從SegFormer-B0到SegFormer-B5,相比之前的分割模型達到了更好的性能和效率。例如,SegFormer-B4在ADE20K上以64M參數實現了50.3%的mIoU,最佳模型SegFormer-B5在Cityscapes驗證集上達到了84.0%的mIoU。

2.1 骨干網絡

5dedd428-0f45-11ee-962d-dac502259ad0.png

backbone

2.2 分級Transformer編碼器

論文中提出了一系列的Mix Transformer編碼器(MiT),MiT-B0到MiT-B5,具有相同的結構,但尺寸不同。MiT-B0是用于快速推理的輕量級模型,而MiT-B5是用于最佳性能的最大模型。設計的MiT部分靈感來自ViT,但針對語義分割進行了定制和優化。

2.3 輕量級All-MLP解碼器

集成了一個僅由MLP層組成的輕量級解碼器,這避免了其他方法中通常用的手工制作和計算要求很高的組件。實現這種簡單解碼器的關鍵是分級Transformer編碼器比傳統的CNN編碼器具有更大的有效感受野(ERF)。

5e3be17c-0f45-11ee-962d-dac502259ad0.png

benchmark

AX650N

AX650N是一款兼具高算力與高能效比的SoC芯片,集成了八核Cortex-A55 CPU,10.8TOPs@INT8 NPU(針對 Transformer 模型進行了定制優化),支持8K@30fps的ISP,以及H.264、H.265編解碼的VPU。接口方面,AX650N支持64bit LPDDR4x,多路MIPI輸入,千兆EthernetUSB、以及HDMI 2.0b輸出,并支持32路1080p@30fps解碼。強大的性能可以讓AX650N幫助用戶在智慧城市、智慧教育、智能制造等領域發揮更大的價值。

AX650N更多介紹請點擊下圖查看:

模型轉換

本文以segformer-b0-cityscapes-640-1280為例。

4.1 模型下載

這次我們推薦從Huggingface的ModelZoo下載模型。

5ea3bd4c-0f45-11ee-962d-dac502259ad0.png

huggingface

● ONNX模型導出的腳本

ONNX模型導出

import torch
from transformers import SegformerForSemanticSegmentation, SegformerFeatureExtractor
from pathlib import Path
from onnxruntime.quantization import quantize_dynamic, QuantType, preprocess
import onnx
import onnxruntime
import os
from PIL import Image
from typing import List


def export_model(model_name: str, export_dir: str, input_sample: torch.Tensor):
  model = SegformerForSemanticSegmentation.from_pretrained(model_name)
  model.eval()
  export_path = os.path.join(export_dir, model_name)
  Path(export_path).mkdir(parents=True, exist_ok=True)
  onnx_path = os.path.join(export_path, "model.onnx")
  # export the model to ONNX while preserving the first dimension as dynamic
  torch.onnx.export(model, input_sample, onnx_path, export_params=True, 
            opset_version=11,
            input_names=["input"],
            output_names=["output"],
            )


export_dir = "./hf_export/"


model_name = "nvidia/segformer-b0-finetuned-cityscapes-640-1280"
export_model(model_name, export_dir, torch.randn([1,3,640,1280]))


# model_name = "nvidia/segformer-b1-finetuned-ade-512-512"
# export_model(model_name, export_dir, torch.randn([1,3,512,512]))
# check_models(model_name, export_dir, image_paths)

● onnxsim優化

$ onnxsim segformer-b0-cityscapes-640-1280.onnx segformer-b0-cityscapes-640-1280-sim.onnx
Simplifying...
Finish! Here is the difference:
┏━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━┓
┃      ┃ Original Model ┃ Simplified Model ┃
┡━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━┩
│ Add    │ 136      │ 136       │
│ Concat   │ 21       │ 1        │
│ Constant  │ 176      │ 0        │
│ Conv    │ 20       │ 20        │
│ Div    │ 46       │ 46        │
│ Erf    │ 8       │ 8        │
│ MatMul   │ 68       │ 68        │
│ Mul    │ 46       │ 46        │
│ Pow    │ 30       │ 30        │
│ ReduceMean │ 60       │ 60        │
│ Relu    │ 1       │ 1        │
│ Reshape  │ 76       │ 76        │
│ Resize   │ 4       │ 4        │
│ Shape   │ 20       │ 0        │
│ Slice   │ 20       │ 0        │
│ Softmax  │ 8       │ 8        │
│ Sqrt    │ 30       │ 30        │
│ Sub    │ 30       │ 30        │
│ Transpose │ 76       │ 76        │
│ Model Size │ 14.3MiB    │ 14.3MiB     │
└────────────┴────────────────┴──────────────────┘

● 添加argmax輸出頭

由于AX650N的NPU支持argmax算子,因此可以將argmax添加到該模型的輸出頭,直接獲取每個像素點置信度最高的類別ID。

首先安裝onnx_graphsurgeon依賴:

pip install onnx_graphsurgeon --index-url https://pypi.ngc.nvidia.com

運行下面的腳本,添加argmax op:

import numpy as np
import onnx
import onnx_graphsurgeon as gs


model_path = "./segformer-b0-cityscapes-640-1280-sim.onnx"
output_model_path = "./segformer-b0-cityscapes-640-1280-sim-argmax.onnx"


onnx_model = onnx.load(model_path)
onnx_graph = gs.import_onnx(onnx_model)
node_last_conv = onnx_graph.nodes[-1]


# Attrs for ArgMax
axis = 1
keepdims = 1


argmax_out_shape = node_last_conv.outputs[0].shape.copy()
argmax_out_shape[axis] = 1


argmax_out = gs.Variable(
  "argmax_output",
  dtype=np.int64,
  shape=argmax_out_shape,
)


argmax_node = gs.Node(
  op="ArgMax",
  name="decode_head_ArgMax",
  inputs=[node_last_conv.outputs[0]],
  outputs=[argmax_out],
  attrs={"axis": axis, "keepdims": keepdims},
)


onnx_graph.nodes.append(argmax_node)
onnx_graph.outputs.clear()
onnx_graph.outputs = [argmax_out]
onnx_graph.cleanup().toposort()
onnx_model_with_argmax = gs.export_onnx(onnx_graph)
onnx_model_with_argmax.ir_version = onnx_model.ir_version


onnx.save(onnx_model_with_argmax, output_model_path)

添加argmax前后兩個ONNX模型對比:

5ee9c300-0f45-11ee-962d-dac502259ad0.png

add-argmax

4.2 模型編譯

使用AX650N配套的AI工具鏈Pulsar2,一鍵完成圖優化、離線量化、編譯、對分功能。

$ pulsar2 build --input model/segformer-b0-cityscapes-640-1280-sim-argmax.onnx --output_dir segformer/ --config config/seg          former_config.json --npu_mode NPU3
Building onnx ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:00
patool: Extracting ./dataset/coco_4.tar ...
patool: running /usr/bin/tar --extract --file ./dataset/coco_4.tar --directory segformer/quant/dataset/input
patool: ... ./dataset/coco_4.tar extracted to `segformer/quant/dataset/input'.
                                       Quant Config Table
┏━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ Input ┃ Shape       ┃ Dataset Directory ┃ Data Format ┃ Tensor Format ┃ Mean                     ┃ Std                     ┃
┡━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩
│ input │ [1, 3, 640, 1280] │ input       │ Image    │ RGB      │ [123.67500305175781, 116.27999877929688,   │ [58.39500045776367, 57.119998931884766,   │
│    │          │          │       │        │ 103.52999877929688]              │ 57.356998443603516]             │
└───────┴───────────────────┴───────────────────┴─────────────┴───────────────┴───────────────────────────────────────────────┴──────────────────────────────────────────────┘
4 File(s) Loaded.
[14:17:44] AX LSTM Operation Format Pass Running ...   Finished.
[14:17:44] AX Refine Operation Config Pass Running ...  Finished.
[14:17:44] AX Transformer Optimize Pass Running ...    Finished.
[14:17:45] AX Reset Mul Config Pass Running ...      Finished.
[14:17:45] AX Tanh Operation Format Pass Running ...   Finished.
[14:17:45] AX Quantization Config Refine Pass Running ... Finished.
[14:17:45] AX Quantization Fusion Pass Running ...    Finished.
[14:17:45] AX Quantization Simplify Pass Running ...   Finished.
[14:17:45] AX Parameter Quantization Pass Running ...   Finished.
Calibration Progress(Phase 1): 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████| 4/4 [00:23<00:00, ?5.86s/it]
Finished.
[1411] AX Passive Parameter Quantization Running ... ?Finished.
[1411] AX Parameter Baking Pass Running ... ? ? ? ? ? Finished.
[1412] AX Refine Int Parameter Pass Running ... ? ? ? Finished.
Network Quantization Finished.
quant.axmodel export success: segformer/quant/quant_axmodel.onnx
Building native ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 000
......
2023-05-30 1418.661 | INFO ? ? | yasched.test_onepass1615 - max_cycle = 37883954
2023-05-30 14:35:04.545 | INFO ? ? | yamain.command.build904 - fuse 1 subgraph(s)

上板部署

5.1 AX-Samples

開源項目AX-Samples實現了常見的深度學習開源算法在愛芯元智的AI SoC上的示例代碼,方便社區開發者進行快速評估和適配。最新版本已開始提供AX650系列的NPU示例,其中也包含了本文介紹的SegFormer參考代碼。

https://github.com/AXERA-TECH/ax-samples/blob/main/examples/ax650/ax_segformer_steps.cc

5.2 運行

# ./ax_segformer -m segformer-b0-cityscapes-640-1280-argmax.axmodel -i segformer_test.png
--------------------------------------
model file : segformer-b0-cityscapes-640-1280-argmax.axmodel
image file : segformer_test.png
img_h, img_w : 640 1280
--------------------------------------
post process cost time:7.07 ms
--------------------------------------
Repeat 1 times, avg time 48.15 ms, max_time 48.15 ms, min_time 48.15 ms
--------------------------------------
--------------------------------------

Segformer運行結果展示

后續計劃

●嘗試部署視覺大模型DINOv2,敬請期待!

審核編輯:湯梓紅
聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 解碼器
    +關注

    關注

    9

    文章

    1144

    瀏覽量

    40854
  • 編碼器
    +關注

    關注

    45

    文章

    3663

    瀏覽量

    135011
  • 計算機
    +關注

    關注

    19

    文章

    7529

    瀏覽量

    88411
  • 模型
    +關注

    關注

    1

    文章

    3291

    瀏覽量

    49028
  • MLP
    MLP
    +關注

    關注

    0

    文章

    57

    瀏覽量

    4260
收藏 人收藏

    評論

    相關推薦

    基于AX650N/AX620Q部署YOLO-World

    目標檢測是計算機視覺領域一項重要的任務。開集目標檢測(Open-set Object Detection)與閉集目標檢測(Closed-set Object Detection)是目標檢測領域的兩個概念。
    的頭像 發表于 04-17 15:36 ?3852次閱讀
    基于<b class='flag-5'>AX650N</b>/<b class='flag-5'>AX</b>620Q<b class='flag-5'>部署</b>YOLO-World

    基于AX650N/AX630C部署端側大語言模型Qwen2

    本文將分享如何將最新的端側大語言模型部署到超高性價比SoC上,向業界對端側大模型部署的開發者提供一種新的思路。
    的頭像 發表于 07-06 17:43 ?3674次閱讀
    基于<b class='flag-5'>AX650N</b>/<b class='flag-5'>AX</b>630C<b class='flag-5'>部署</b>端側大語言模型Qwen2

    愛芯元智發布第三代智能視覺芯片AX650N,為智慧生活賦能

    中國 上海 2023 年 3 月 6 日 ——人工智能視覺感知芯片研發及基礎算力平臺公司愛芯元智宣布推出第三代高算力、高能效比的SoC芯片——AX650N。這是繼AX620、AX630系列后,愛芯元
    發表于 03-07 10:57 ?1656次閱讀
    愛芯元智發布第三代智能視覺芯片<b class='flag-5'>AX650N</b>,為智慧生活賦能

    【愛芯派 Pro 開發板試用體驗】在愛芯派 Pro上部署坐姿檢測

    。考慮到AX650N強大的能力,直接在板上編譯。 首先,git clone https://github.com/AXERA-TECH/ax-samples.git下載源碼到本地。 然后,指定芯片為
    發表于 01-16 22:41

    【愛芯派 Pro 開發板試用體驗】篇一:開箱篇

    愛芯派 Pro (AXera-Pi Pro)M4N Dock 是一款集成了高算力、高能效 AI SOC 的開發板。它采用了愛芯 AX650N 作為主控芯片。AX650N 集成了 8 核 A55
    發表于 11-15 11:32

    【愛芯派 Pro 開發板試用體驗】愛芯元智AX650N部署yolov5s 自定義模型

    愛芯元智AX650N部署yolov5s 自定義模型 本博客將向你展示零基礎一步步的部署好自己的yolov5s模型(博主展示的是安全帽模型),利用yolov5 官方的代碼工具導出onnx模型,并通過
    發表于 11-16 19:34

    【愛芯派 Pro 開發板試用體驗】愛芯元智AX650N部署yolov8s 自定義模型

    愛芯元智AX650N部署yolov8s 自定義模型 本博客將向你展示零基礎一步步的部署好自己的yolov8s模型(博主展示的是自己訓練的手寫數字識別模型),本博客教你從訓練模型到轉化成利于
    發表于 11-24 20:40

    【愛芯派 Pro 開發板試用體驗】ax650使用ax-pipeline進行推理

    /AXERA-TECH/ax-pipeline.git 下載sdk cd ax-pipeline ./download_ax_bsp.sh ax650 cd
    發表于 12-19 17:36

    愛芯元智第三代智能視覺芯片AX650N高能效比SoC芯片

    愛芯元智正式推出第三代高算力、高能效比的SoC芯片——AX650N。這是繼AX620、AX630系列后,愛芯元智推出的又一款高性能智能視覺芯片。 AX650N是一款兼具高算力與高能效比
    的頭像 發表于 03-10 17:13 ?4175次閱讀

    如何優雅地將Swin Transformer模型部署AX650N Demo板上?

    今年來以ChatGPT為代表的大模型的驚艷效果,讓AI行業迎來了新的動力。各種AIGC的應用接踵而至。
    的頭像 發表于 04-15 10:15 ?2357次閱讀

    基于AX650N部署DETR

    目標檢測作為計算機視覺應用的基礎任務,一直備受行業應用重點關注。從最早學術界的Two-Stage方案Faster-RCNN,到首個利于工業界高效率部署的One-Stage方案SSD(Single
    的頭像 發表于 05-15 14:27 ?889次閱讀
    基于<b class='flag-5'>AX650N</b><b class='flag-5'>部署</b>DETR

    基于AX650N部署EfficientViT

    的速度。為了實現對ViT模型的實時部署,微軟和港中文共同在CVPR2023提出論文《EfficientViT: Memory Efficient Vision Transformer with Cascaded Group Attention》。
    的頭像 發表于 05-26 10:30 ?1073次閱讀

    基于AX650N部署SegFormer

    語義分割(Semantic Segmentation)是計算機視覺中的一項基本任務。與單張圖像分類任務相比,語義分割相當于是像素級別上的分類任務。
    的頭像 發表于 06-20 16:37 ?730次閱讀
    基于<b class='flag-5'>AX650N</b><b class='flag-5'>部署</b><b class='flag-5'>SegFormer</b>

    基于AX650N部署視覺大模型DINOv2

    最近一段時間,基于Transformer網絡結構的視覺大模型呈現出爆發式增長,繼Segment Anything(SAM)之后,Meta AI再次發布重量級開源項目——DINOv2。DINOv2可以抽取到強大的圖像特征,且在下游任務上不需要微調,這使得它適合作為許多不同的應用中新的Backbone。
    的頭像 發表于 06-30 10:07 ?3114次閱讀

    愛芯元智AX620E和AX650系列芯片正式通過PSA Certified安全認證

    萬物互聯的時代,安全性已成為物聯網產品設計及部署的基本要求。近日,愛芯元智AX620E和AX650系列芯片(包含AX630C/AX620Q/
    的頭像 發表于 04-23 15:45 ?881次閱讀
    愛芯元智<b class='flag-5'>AX</b>620E和<b class='flag-5'>AX650</b>系列芯片正式通過PSA Certified安全認證
    主站蜘蛛池模板: 国产午夜精品不卡观看| 香蕉97超级碰碰碰碰碰久| 暖暖 视频 免费 高清 在线观看| 且试天下芒果免费观看| 亚洲精品高清在线| 白洁在线观看| 久久精品免视看国产| 久久精品影视| 试看2分钟AA片| 在线国产a不卡| 国产毛片A级久久久不卡精品| 免费人成在线观看视频不卡| 亚洲不卡一卡2卡三卡4卡5卡| gogogo高清在线观看| 果冻传媒独家原创在线观看| 日韩内射美女人妻一区二区三区| 在线伦理电影网| 精品久久久噜噜噜久久久app| 色欲AV精品一区二区入口 | 精品性影院一区二区三区内射| 色欲AV色欲AV久久麻豆| a视频在线观看免费| 麻豆XXXX乱女少妇精品-百度| 亚洲视频精选| 国产主播福利一区二区| 特级做A爰片毛片免费看108| 北条麻妃のレズナンパ| 免费在线视频成人| 2020亚洲色噜噜狠狠网站| 精品少妇高潮蜜臀涩涩AV| 亚洲欧美一区二区三区九九九 | 免费无码又爽又黄又刺激网站| 一受n攻高h全肉np| 九九热这里都是精品| 亚洲人人为我我为人人| 韩日美无码精品无码| 亚洲AV久久无码精品九号| 国产人妻人伦精品836700| 亚洲成年男人的天堂网| 果冻传媒视频在线播放 免费观看 果冻传媒视频在线播放 | 第一次破女视频出血视频|