色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

實現自動駕駛需要多少傳感器?成本是個問題

傳感器專家網 ? 來源:半導體行業觀察 ? 作者:半導體行業觀察 ? 2023-06-06 15:46 ? 次閱讀

由于傳感器的成本從 15 美元到 1,000 美元不等,汽車制造商開始質疑車輛至少在部分時間內需要多少傳感器才能實現完全自動駕駛

這些傳感器用于收集有關周圍環境的數據,包括圖像、激光雷達、雷達、超聲波和熱傳感器。一種類型的傳感器是不夠的,因為每一種都有其局限性。這是傳感器融合背后的關鍵驅動力,它結合了多種類型的傳感器以實現安全的自動駕駛。

所有 2 級或更高級別的車輛都依靠傳感器“看到”周圍環境并執行車道居中、自適應巡航控制、緊急制動和盲點警告等任務。到目前為止,OEM 正在采用截然不同的設計和部署方法。

2022 年 5 月,梅賽德斯-奔馳在德國推出了第一款能夠進行 3 級自動駕駛的汽車。3 級自動駕駛是 S 級和 EQS 的一個選項,計劃于 2024 年在美國推出。據該公司稱,建立在駕駛輔助包(雷達和攝像頭)基礎上的 DRIVE PILOT 添加了新的傳感器,包括激光雷達、前窗的高級立體攝像頭和后窗的多功能攝像頭。前駕駛室還增加了麥克風(特別是用于檢測緊急車輛)和濕度傳感器。總共安裝了 30 個傳感器來捕獲安全自動駕駛所需的數據。

特斯拉走的是一條不同的道路。2021 年,特斯拉宣布其 Tesla Vision 純攝像頭自動駕駛技術戰略將在 Model 3 和 Model Y 上實施,隨后在 2022 年在 Model S 和 Model X 上實施。該公司還決定取消超聲波傳感器。

傳感器限制

當今自動駕駛設計面臨的挑戰之一是不同傳感器的限制。為了實現安全的自動駕駛,可能需要傳感器融合。關鍵問題不僅是傳感器的數量、類型和部署位置,還包括 AI/ML 技術應如何與傳感器交互以分析數據以做出最佳駕駛決策。

c4b265bc-01a7-11ee-9c1d-dac502259ad0.png

圖 1:為了克服傳感器限制,可能需要傳感器融合,將多個傳感器組合起來進行自動駕駛,以實現最佳性能和安全性。

“自動駕駛廣泛使用人工智能技術,” Rambus安全 IP 技術產品經理 Thierry Kouthon 表示. “自動駕駛,甚至是入門級的 ADAS 功能,都要求車輛表現出與人類駕駛員相當或更好的環境意識水平。首先,車輛必須識別其他車輛、行人和路邊基礎設施,并確定它們的正確位置。這需要 AI 深度學習技術能夠很好地解決的模式識別功能。視覺模式識別是車輛密集使用的高級深度學習領域。此外,車輛必須能夠始終計算其最佳軌跡和速度。這需要 AI 也能很好地解決的路線規劃能力。這樣,激光雷達和雷達就可以提供正確重建車輛環境所必需的距離信息。”

傳感器融合,結合來自不同傳感器的信息以更好地了解車輛環境,仍然是一個活躍的研究領域。

“每種類型的傳感器都有局限性,”Kouthon 說。“相機非常適合物體識別,但提供的距離信息很差,而且圖像處理需要大量的計算資源。相比之下,激光雷達和雷達提供出色的距離信息,但清晰度較差。此外,激光雷達在惡劣的天氣條件下效果不佳。”

我們真正需要多少個傳感器?

對于自動駕駛系統需要多少傳感器的問題,沒有簡單的答案。原始設備制造商目前正試圖解決這個問題。這里的其他考慮因素包括卡車在開闊的道路上行駛和城市機器人出租車有非常不同的需求。

“這是一項艱巨的計算,因為每個汽車原始設備制造商都有自己的架構,通過提供更好的空間定位、更長的距離和更高的可見度以及識別和分類物體然后區分各種物體的能力來保護車輛,”Cadence的 Tensilica Vision、雷達和激光雷達 DSP 產品管理和營銷總監Amit Kumar 說。“這還取決于汽車制造商決定啟用何種級別的自動駕駛(例如,提供廣度)。簡而言之,要實現部分自動駕駛,傳感器的最小數量可以是 4 到 8 個各種類型。為了完全自動駕駛,今天使用了 12 個以上的傳感器。”

Kumar 指出,在特斯拉的案例中,有 20 個傳感器(8 個攝像頭傳感器加上 12 個 3 級或以下的超聲波傳感器),沒有激光雷達或雷達。“該公司堅信計算機視覺,其傳感器套件適用于 L3 Autonomy。媒體報道說,特斯拉可能會引入雷達來改進自動駕駛。”

Zoox 實施了四個激光雷達傳感器,以及攝像頭和雷達傳感器的組合。這是一輛完全無人駕駛的車輛,車內沒有駕駛員,目標是在地圖清晰、易于理解的路線上行駛。商業部署尚未開始,但很快就會有一個有限的用例(不像乘用車那么廣泛)。

Nuro 的自動駕駛送貨車,審美不是那么重要,它使用了一個 360 度攝像頭系統,有四個傳感器,加上一個 360 度激光雷達傳感器,四個雷達傳感器,再加上超聲波傳感器。

實施這些系統沒有簡單的公式。

Synopsys汽車軟件與安全高級經理 Chris Clark 表示:“您需要的傳感器數量是組織可接受的風險水平,并且還取決于應用程序”'。“如果你正在開發機器人出租車,他們不僅需要用于道路安全的傳感器,還需要車內的傳感器來監控乘客在車內的行為以確保乘客安全。在這種情況下,我們將處于人口稠密和城市密度高的地區,該地區具有相當獨特的特征,而不是用于高速公路行駛的車輛,在高速公路上您有更長的距離和更大的反應空間。在高速公路上,侵入車道的可能性較小。我不認為有一個固定的規則,你必須擁有三種不同類型的傳感器和三個不同的攝像頭來覆蓋所有自動駕駛汽車的不同角度。”

不過,有多少傳感器將取決于該車輛將要解決的用例。

“在機器人出租車的例子中,必須使用激光雷達和普通攝像頭,以及超聲波或雷達,因為密度太大而無法處理,”Clark說。“此外,我們需要包括一個用于 V2X 的傳感器,流入車輛的數據將與車輛在周圍環境中看到的數據保持一致。在公路卡車運輸解決方案中,將使用不同類型的傳感器。除非我們正在做類似團隊合作的事情,否則超聲波在高速公路上的用處不大,但這不是前瞻性傳感器。相反,它可能是前視和后視傳感器,這樣我們就可以連接到所有團隊資產。但激光雷達和雷達變得更加重要,因為卡車在高速公路上行駛時必須考慮距離和范圍。”

另一個考慮因素是所需的分析級別。“有這么多數據要處理,我們必須決定其中有多少數據是重要的,”他說。“這就是傳感器的類型和功能變得有趣的地方。例如,如果激光雷達傳感器可以在周期的早期進行本地分析,這將減少流回傳感器融合以進行額外分析的數據量。減少數據量又會降低系統設計的總計算能力和成本。否則,車輛將需要以整合計算環境或專注于傳感器網格化和分析的專用 ECU 的形式進行額外處理。”

成本始終是一個問題

傳感器融合可能很昂貴。在早期,由多個單元組成的激光雷達系統的成本可能高達 80,000 美元。高成本來自設備中的機械部件。如今,成本要低得多,一些制造商預計在未來的某個時候,它可能會低至每件 200 到 300 美元。新興的熱傳感器技術將在幾千美元的范圍內。總體而言,原始設備制造商將繼續面臨降低傳感器部署總成本的壓力。使用更多攝像頭代替激光雷達系統將有助于原始設備制造商降低制造成本。

“在城市環境中,安全的基本定義是消除所有可避免的碰撞,” Siemens Digital Industries Software混合和虛擬系統副總裁 David Fritz 說。所需的最小傳感器數量取決于用例。一些人認為,在未來,智慧城市基礎設施將變得更加復雜和無處不在,從而減少城市環境中對車載傳感的需求。”

車對車通信也可能對傳感器產生影響。

“在這里,機載傳感器的數量可能會減少,但我們還沒有做到這一點,”Fritz 觀察到。“此外,在某些情況下,AV 必須假設所有外部信息由于電源故障或其他中斷而變得不可用。因此,車輛始終需要配備一組傳感器——不僅適用于城市地區,也適用于農村地區。我們一直致力于的許多設計都需要在車輛外部安裝八個攝像頭,在內部安裝幾個攝像頭。前置兩個攝像頭,經過適當校準,我們可以實現低延遲、高分辨率立體視覺,提供物體的深度范圍,從而減少對雷達的需求。我們在車輛的前部、后部和兩側都這樣做,以獲得完整的 360° 視角。”

當所有攝像頭執行對象檢測和分類時,關鍵信息將被傳遞到中央計算系統以做出控制決策。

“如果基礎設施或其他車輛信息可用,它會與來自車載傳感器的信息融合,以生成更全面的 3D 視圖,從而做出更好的決策,”Fritz 說。“在車內,額外的攝像頭用于監控駕駛員,還可以檢測遺留物體等占用情況。可能添加一個低成本雷達來處理惡劣天氣情況,例如有霧或下雨的情況,是傳感器套件的高級補充。我們最近沒有看到大量使用激光雷達。在某些情況下,激光雷達性能會受到回波和反射的影響。最初,自動駕駛原型嚴重依賴激光雷達數據的 GPU 處理,但最近更智能的架構越來越傾向于高分辨率,

優化傳感器融合可能很復雜。您如何知道哪種組合能為您帶來最佳性能?除了進行功能測試外,原始設備制造商還依賴 Ansys 和西門子等公司提供建模和仿真解決方案,以測試各種傳感器組合的結果,以實現最佳性能。

增強技術影響未來的傳感器設計

智能基礎設施中的 V2X、5G、高級數字地圖和 GPS 等增強技術將實現自動駕駛,而車載傳感器更少。但要讓這些技術得到提升,自動駕駛需要整個汽車行業的支持,以及智慧城市的發展。

“各種增強技術服務于不同的目的,” Arteris IP解決方案和業務開發副總裁 Frank Schirrmeister 指出。“開發人員通常會結合多個來創建安全便捷的用戶體驗。例如,用于路徑規劃的地圖信息數字孿生可以在能見度有限的條件下創造更安全的體驗,以增強基于傳感器信息的車內本地決策。V2V 和 V2X 信息可以補充車內本地可用的信息以做出安全決策,增加冗余并創建更多數據點以作為安全決策的基礎。”

此外,車聯網有望實現車輛與路邊基礎設施之間的實時協作,這需要超可靠低延遲通信 (URLLC) 等技術。

“這些需求導致各種人工智能技術在流量預測、5G 資源分配、擁塞控制等方面的應用,”Kouthon 說。“換句話說,人工智能可以優化和減少自動駕駛對網絡基礎設施造成的沉重負擔。我們希望原始設備制造商使用軟件定義的車輛架構構建自動駕駛汽車,其中 ECU 被虛擬化并通過無線方式更新。數字雙胞胎技術對于在非常接近真實車輛的車輛云模擬上測試軟件和更新至關重要。”

結論

最終實施時,3 級自動駕駛可能需要 30 多個傳感器或十幾個攝像頭,具體取決于 OEM 的架構。但關于哪個更安全,或者自動駕駛傳感器系統是否能在城市環境中提供與在高速公路上駕駛相同水平的安全駕駛,尚無定論。

隨著未來幾年傳感器成本的下降,它可能會打開新傳感器的大門,這些傳感器可以添加到組合中以提高惡劣天氣下的安全性。但是,原始設備制造商可能需要很長時間才能對一定數量的傳感器進行標準化,這些傳感器被認為足以確保在所有條件和極端情況下的安全性。

來源半導體行業觀察

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 傳感器
    +關注

    關注

    2552

    文章

    51217

    瀏覽量

    754606
  • 雷達
    +關注

    關注

    50

    文章

    2949

    瀏覽量

    117665
  • 熱傳感器
    +關注

    關注

    0

    文章

    26

    瀏覽量

    14376
  • 激光雷達
    +關注

    關注

    968

    文章

    3988

    瀏覽量

    190072
  • 自動駕駛
    +關注

    關注

    784

    文章

    13856

    瀏覽量

    166590
收藏 人收藏

    評論

    相關推薦

    傳感器融合在自動駕駛中的應用趨勢探究

    自動駕駛技術的快速發展加速交通行業變革,為實現車輛自動駕駛需要車輛對復雜動態環境做出準確、高效的響應,而多傳感器融合技術為提升
    的頭像 發表于 12-05 09:06 ?397次閱讀
    多<b class='flag-5'>傳感器</b>融合在<b class='flag-5'>自動駕駛</b>中的應用趨勢探究

    自動駕駛中常提的SLAM到底是啥?

    ?這兩問題。目前,自動駕駛技術主要依賴高精地圖和RTK(實時動態定位)系統完成高精度定位。然而,這種方法的實現成本高昂,需要依賴于完善的基礎設施,且在動態環境中適應性不足。為此
    的頭像 發表于 11-21 15:17 ?961次閱讀
    <b class='flag-5'>自動駕駛</b>中常提的SLAM到底是<b class='flag-5'>個</b>啥?

    MEMS技術在自動駕駛汽車中的應用

    MEMS技術在自動駕駛汽車中的應用主要體現在傳感器方面,這些傳感器自動駕駛汽車提供了關鍵的環境感知和數據采集能力。以下是對MEMS技術在自動駕駛
    的頭像 發表于 11-20 10:19 ?426次閱讀

    智能駕駛自動駕駛的關系

    駕駛的技術。 智能駕駛包含“單車”智能駕駛和“協作式”智能駕駛。前者通過攝像頭、雷達等傳感器以及高效準確的算法,賦予車輛
    的頭像 發表于 10-23 16:02 ?720次閱讀

    FPGA在自動駕駛領域有哪些優勢?

    通過標準接口與其他硬件組件進行集成,如傳感器、處理和通信模塊等。這種易于集成的特性使得FPGA能夠方便地融入自動駕駛系統的整體架構中。同時,FPGA還支持模塊化設計,可以根據需要擴展
    發表于 07-29 17:11

    FPGA在自動駕駛領域有哪些應用?

    低,適合用于實現高效的圖像算法,如車道線檢測、交通標志識別等。 雷達和LiDAR處理:自動駕駛汽車通常會使用雷達和LiDAR(激光雷達)等多種傳感器來獲取環境信息。FPGA能夠協助完成這些傳感
    發表于 07-29 17:09

    自動駕駛識別技術有哪些

    自動駕駛的識別技術是自動駕駛系統中的重要組成部分,它使車輛能夠感知并理解周圍環境,從而做出智能決策。自動駕駛識別技術主要包括多種傳感器及其融合技術,以及基于這些
    的頭像 發表于 07-23 16:16 ?702次閱讀

    自動駕駛傳感器技術介紹

    自動駕駛傳感器技術是自動駕駛系統的核心組成部分,它使車輛能夠感知并理解周圍環境,從而做出智能決策。以下是對自動駕駛傳感器技術的詳細介紹,內
    的頭像 發表于 07-23 16:08 ?2317次閱讀

    自動駕駛汽車傳感器有哪些

    自動駕駛汽車傳感器實現自動駕駛功能的關鍵組件,它們通過采集和處理車輛周圍環境的信息,為自動駕駛系統提供必要的感知和決策依據。以下是對
    的頭像 發表于 07-23 16:00 ?2348次閱讀

    XV7181BB 陀螺儀傳感器自動駕駛設備中的應用

    自動駕駛技術正在迅速發展,改變著交通運輸的未來。為了實現安全、穩定和高效的自動駕駛,車輛需要依賴先進的傳感器技術來獲取實時的姿態和運動數據。
    的頭像 發表于 06-13 15:23 ?519次閱讀
    XV7181BB 陀螺儀<b class='flag-5'>傳感器</b>在<b class='flag-5'>自動駕駛</b>設備中的應用

    揭秘自動駕駛:未來汽車的感官革命,究竟需要哪些超級傳感器

    來源:LANCI瀾社汽車,謝謝 編輯:感知芯視界 Link 隨著自動駕駛技術的發展,我們已進入一技術瓶頸期。在這一背景下,汽車制造商開始將注意力轉向自動駕駛的關鍵組成部分——傳感器
    的頭像 發表于 05-31 09:14 ?633次閱讀

    未來已來,多傳感器融合感知是自動駕駛破局的關鍵

    巨大的進展;自動駕駛開始摒棄手動編碼規則和機器學習模型的方法,轉向全面采用端到端的神經網絡AI系統,它能模仿學習人類司機的駕駛,遇到場景直接輸入傳感器數據,再直接輸出轉向、制動和加速信號。模仿學習人類
    發表于 04-11 10:26

    探索自動駕駛傳感器仿真模型的可信度

    環境感知作為實現自動駕駛的首要環節,主要是通過智能網聯汽車搭載的視覺相機、激光雷達、毫米波雷達等傳感器感知周圍的道路環境并快速準確的獲取周圍目標的類別、位置、尺寸和速度等信息,是自動駕駛
    發表于 03-22 12:34 ?1355次閱讀
    探索<b class='flag-5'>自動駕駛</b><b class='flag-5'>傳感器</b>仿真模型的可信度

    自動駕駛發展問題及解決方案淺析

    汽車的發展提供有益的參考。 ? 自動駕駛汽車發展的現狀與挑戰 (一)技術難題 自動駕駛汽車的核心在于通過先進的傳感器、算法和控制系統實現車輛的自主
    的頭像 發表于 03-14 08:38 ?1180次閱讀

    CMOS圖像傳感器自動駕駛汽車提供視覺感知

    來源:安森美,謝謝 編輯:感知芯視界 Link 要實現自動駕駛汽車,需要整合來自多種傳感器的信息,其中攝像頭的信息可能是最重要的。這些攝像頭必須能夠在各種條件下連續捕捉最微小的細節,
    的頭像 發表于 02-27 09:28 ?526次閱讀
    主站蜘蛛池模板: 成人在免费观看视频国产| 伊人精品在线| 亚洲欲色欲色XXXXX在线AV| 粉嫩无套白浆第一次jk| 老少配xxxxx欧美| 中文在线观看免费网站| 久久re热线视频精品99| 亚洲精品国产第一区第二区| 果冻传媒视频在线观看完整版免费 | 国产精品人妻一区免费看8C0M| 亲胸吻胸添奶头GIF动态图免费 | 在线黑人抽搐潮喷| 久久伊人草| 黄小飞二人转| 亚洲黄色官网| 九九热这里只有精品2| 在线国产视频观看| 免费在线视频a| chinese极品嫩模videos| 解开美女胸衣2破解版| 亚洲视频在线看| 精品久久电影网| 2022国产精品不卡a| 欧美成人猛片aaaaaaa| 成人免费视频在线| 午夜福利视频极品国产83| 国产呦精品一区二区三区下载 | 国产伦精品一区二区免费| 亚洲精品色婷婷在线蜜芽| 禁漫H天堂免费A漫| 91青青草原| 三级色视频| 精品国产福利在线视频| 97色伦亚洲自偷| 日韩亚洲不卡在线视频| 国产亚洲AV精品无码麻豆| 在线黑人抽搐潮喷| 男人狂躁进女人免费视频公交| 成年人视频在线免费播放| 性女传奇快播| 久久橹|