色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

人工智能10大流行算法分享

人工智能與大數據技術 ? 來源:InfoQ ? 作者:InfoQ ? 2023-03-29 10:32 ? 次閱讀

本文為有志于成為數據科學家或對此感興趣的讀者們介紹最流行的機器學習算法

機器學習是該行業的一個創新且重要的領域。我們為機器學習程序選擇的算法類型,取決于我們想要實現的目標。

現在,機器學習有很多算法。因此,如此多的算法,可能對于初學者來說,是相當不堪重負的。今天,我們將簡要介紹 10 種最流行的機器學習算法,這樣你就可以適應這個激動人心的機器學習世界了!

讓我們言歸正傳!

1. 線性回歸

線性回歸(Linear Regression)可能是最流行的機器學習算法。線性回歸就是要找一條直線,并且讓這條直線盡可能地擬合散點圖中的數據點。它試圖通過將直線方程與該數據擬合來表示自變量(x 值)和數值結果(y 值)。然后就可以用這條線來預測未來的值!

這種算法最常用的技術是最小二乘法(Least of squares)。這個方法計算出最佳擬合線,以使得與直線上每個數據點的垂直距離最小。總距離是所有數據點的垂直距離(綠線)的平方和。其思想是通過最小化這個平方誤差或距離來擬合模型。

2. 邏輯回歸

邏輯回歸(Logistic regression)與線性回歸類似,但它是用于輸出為二進制的情況(即,當結果只能有兩個可能的值)。對最終輸出的預測是一個非線性的 S 型函數,稱為 logistic function, g()。

這個邏輯函數將中間結果值映射到結果變量 Y,其值范圍從 0 到 1。然后,這些值可以解釋為 Y 出現的概率。S 型邏輯函數的性質使得邏輯回歸更適合用于分類任務。

3. 決策樹

決策樹(Decision Trees)可用于回歸和分類任務。

在這一算法中,訓練模型通過學習樹表示(Tree representation)的決策規則來學習預測目標變量的值。樹是由具有相應屬性的節點組成的。

在每個節點上,我們根據可用的特征詢問有關數據的問題。左右分支代表可能的答案。最終節點(即葉節點)對應于一個預測值。

每個特征的重要性是通過自頂向下方法確定的。節點越高,其屬性就越重要。

4. 樸素貝葉斯

樸素貝葉斯(Naive Bayes)是基于貝葉斯定理。它測量每個類的概率,每個類的條件概率給出 x 的值。這個算法用于分類問題,得到一個二進制“是 / 非”的結果。看看下面的方程式。

60b8f7cc-cdd8-11ed-bfe3-dac502259ad0.png

樸素貝葉斯分類器是一種流行的統計技術,可用于過濾垃圾郵件!

5. 支持向量機(SVM)

支持向量機(Support Vector Machine,SVM)是一種用于分類問題的監督算法。支持向量機試圖在數據點之間繪制兩條線,它們之間的邊距最大。為此,我們將數據項繪制為 n 維空間中的點,其中,n 是輸入特征的數量。在此基礎上,支持向量機找到一個最優邊界,稱為超平面(Hyperplane),它通過類標簽將可能的輸出進行最佳分離。

超平面與最近的類點之間的距離稱為邊距。最優超平面具有最大的邊界,可以對點進行分類,從而使最近的數據點與這兩個類之間的距離最大化。

6. K- 最近鄰算法(KNN)

K- 最近鄰算法(K-Nearest Neighbors,KNN)非常簡單。KNN 通過在整個訓練集中搜索 K 個最相似的實例,即 K 個鄰居,并為所有這些 K 個實例分配一個公共輸出變量,來對對象進行分類。

K 的選擇很關鍵:較小的值可能會得到大量的噪聲和不準確的結果,而較大的值是不可行的。它最常用于分類,但也適用于回歸問題。

用于評估實例之間相似性的距離可以是歐幾里得距離(Euclidean distance)、曼哈頓距離(Manhattan distance)或明氏距離(Minkowski distance)。歐幾里得距離是兩點之間的普通直線距離。它實際上是點坐標之差平方和的平方根。

7. K- 均值

K- 均值(K-means)是通過對數據集進行分類來聚類的。例如,這個算法可用于根據購買歷史將用戶分組。它在數據集中找到 K 個聚類。K- 均值用于無監督學習,因此,我們只需使用訓練數據 X,以及我們想要識別的聚類數量 K。

該算法根據每個數據點的特征,將每個數據點迭代地分配給 K 個組中的一個組。它為每個 K- 聚類(稱為質心)選擇 K 個點。基于相似度,將新的數據點添加到具有最近質心的聚類中。這個過程一直持續到質心停止變化為止。

8. 隨機森林

隨機森林(Random Forest)是一種非常流行的集成機器學習算法。這個算法的基本思想是,許多人的意見要比個人的意見更準確。在隨機森林中,我們使用決策樹集成(參見決策樹)。

為了對新對象進行分類,我們從每個決策樹中進行投票,并結合結果,然后根據多數投票做出最終決定。

9. 降維

由于我們今天能夠捕獲的數據量之大,機器學習問題變得更加復雜。這就意味著訓練極其緩慢,而且很難找到一個好的解決方案。這一問題,通常被稱為“維數災難”(Curse of dimensionality)。

降維(Dimensionality reduction)試圖在不丟失最重要信息的情況下,通過將特定的特征組合成更高層次的特征來解決這個問題。主成分分析(Principal Component Analysis,PCA)是最流行的降維技術。

主成分分析通過將數據集壓縮到低維線或超平面 / 子空間來降低數據集的維數。這盡可能地保留了原始數據的顯著特征。

可以通過將所有數據點近似到一條直線來實現降維的示例。

10. 人工神經網絡(ANN)

人工神經網絡(Artificial Neural Networks,ANN)可以處理大型復雜的機器學習任務。神經網絡本質上是一組帶有權值的邊和節點組成的相互連接的層,稱為神經元。在輸入層和輸出層之間,我們可以插入多個隱藏層。人工神經網絡使用了兩個隱藏層。除此之外,還需要處理深度學習

人工神經網絡的工作原理與大腦的結構類似。一組神經元被賦予一個隨機權重,以確定神經元如何處理輸入數據。通過對輸入數據訓練神經網絡來學習輸入和輸出之間的關系。在訓練階段,系統可以訪問正確的答案。

如果網絡不能準確識別輸入,系統就會調整權重。經過充分的訓練后,它將始終如一地識別出正確的模式。

每個圓形節點表示一個人工神經元,箭頭表示從一個人工神經元的輸出到另一個人工神經元的輸入的連接。

接下來是什么?現在,你已經了解了最流行的機器學習算法的基礎介紹。你已經準備好學習更為復雜的概念,甚至可以通過深入的動手實踐來實現它們。如果你想了解如何實現這些算法,可以參考 Educative 出品的 Grokking Data Science 課程,該課程將這些激動人心的理論應用于清晰、真實的應用程序。

審核編輯 :李倩

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 算法
    +關注

    關注

    23

    文章

    4608

    瀏覽量

    92844
  • 人工智能
    +關注

    關注

    1791

    文章

    47208

    瀏覽量

    238287
  • 人工神經網絡

    關注

    1

    文章

    119

    瀏覽量

    14619
  • 機器學習
    +關注

    關注

    66

    文章

    8408

    瀏覽量

    132573

原文標題:人工智能10大流行算法,通俗易懂講明白

文章出處:【微信號:TheBigData1024,微信公眾號:人工智能與大數據技術】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    人工智能是什么?

    的階段。阻礙前行的因素很多,要攻克的技術難點也很多,但這些問題在人工智能領域的專家來看,技術的積累都只是時間問題,對人工智能技術做更進一步剖析的話,其實就是“算法”+“海量數據”。更通俗一點就是:在
    發表于 09-16 15:40

    百度人工智能大神離職,人工智能的出路在哪?

    被打上人工智能的標簽,一派欣欣向榮之景仿佛在宣示,這是人工智能技術發展的最好時代,但是,在市場火熱的背后,我們需要理性的思考。 目前,人工智能行業內存在很大的水分,很多企業隨大流進入這
    發表于 03-23 17:00

    分享:人工智能算法將帶領機器人走向何方?

    )機器人是可編程的;(3)機器人通常是自主或半自主的; 什么是人工智能人工智能是一個大的范疇,里面包括了很多小的分支,是依靠算法實現的,它通過開發計算機程序來完成智能的任務,能幫助載體利用最短的時間找到
    發表于 08-16 10:44

    人工智能就業前景

    據相關招聘機構數據顯示,2018年AI領域仍然是大部分資深技術人才轉崗的首選目標,在人才最緊缺的前十大職位中,時下最火的大數據、人工智能算法類崗位占據半壁江山。據調查指出,2017年技術研發類崗位
    發表于 03-29 15:46

    人工智能和機器學習的前世今生

    人工智能和深度學習、物聯網(IOT)以及大數據將從他們那些不太知情的同行那里帶走超過1兆2000億美元。數據是機器學習的關鍵。算法從一定數量的數據中學習,然后應用這種學習來做出明智的決策
    發表于 08-27 10:16

    全語音人工智能AI耳機,或將引爆智能耳機市場

    ``2017年,在中國媒體十大流行語中,人工智能逐漸受大眾所熟知。而最初將人工智能這一概念在大眾中普及開來,無疑是智能音箱了。如:小度智能
    發表于 11-02 11:55

    解讀人工智能的未來

    `已歷經60多年的人工智能在物聯網以及大數據的推動下,實現飛躍式的發展,并且迎來了第三個黃金周期。必優傳感今天和大家解讀一下關于人工智能的未來。自從有了人工智能,引發了人類的各種“未來論”。有人說
    發表于 11-14 10:43

    人工智能技術及算法設計指南

    手把手教你設計人工智能芯片及系統(全階設計教程+AI芯片FPGA實現+開發板)詳情鏈接:http://url.elecfans.com/u/c422a4bd15人工智能各種技術與算法
    發表于 02-12 14:07

    人工智能醫生未來或上線,人工智能醫療市場規模持續增長

    。   人工智能和醫療的結合被看作未來5-10年的投資熱點之一。根據前瞻產業研究院的報告,中國人工智能+醫療市場規模在持續增長,2017年超130億元,增長40.7%,2018年市場規模約200億元。那么
    發表于 02-24 09:29

    智能控制、人工智能智能算法的發展前景怎么樣

    淺談智能控制、人工智能智能算法的發展前景
    發表于 05-10 01:21

    人工智能:超越炒作

    。對于人工智能用例在當前物聯網環境中變為現實,必須滿足三個條件:非常大的真實數據集具有重要處理能力的硬件架構和環境開發新的強大算法人工神經網絡(ANN)以充分利用上述內容很明顯,后兩種要求相互依賴,并且
    發表于 05-29 10:46

    人工智能芯片是人工智能發展的

    人工智能芯片是人工智能發展的 | 特倫斯謝諾夫斯基責編 | 屠敏本文內容經授權摘自《深度學習 智能時代的核心驅動力量》從AlphaGo的人機對戰,到無人駕駛汽車的上路,再到AI合成主播上崗
    發表于 07-27 07:02

    一文看懂人工智能語音芯片 精選資料分享

    以來,谷歌、百度、阿里、騰訊等互聯網巨頭以及多家知名的風險投資基金瘋狂涌入人工智能行業,大力推動各初創算法(方案)公司在多個應用領域商業化落地。隨著人工智能在視覺識別...
    發表于 07-29 08:42

    人工智能基本概念機器學習算法

    目錄人工智能基本概念機器學習算法1. 決策樹2. KNN3. KMEANS4. SVM5. 線性回歸深度學習算法1. BP2. GANs3. CNN4. LSTM應用人工智能基本概念數
    發表于 09-06 08:21

    《移動終端人工智能技術與應用開發》人工智能的發展與AI技術的進步

    人工智能的發展是隨著人類生活需要,產業需求不斷提升的,其中人工智能的發展很大程度上受到了計算機算力的影響,隨著數據處理量的增大,人工智能算法對算力的要求逐年增加,而且沒過兩年算力上升一倍,因此往往
    發表于 02-17 11:00
    主站蜘蛛池模板: 强开乳罩摸双乳吃奶视频| 久久这里只有热精品18| 欧美日韩一级黄色片| 中文人妻熟妇精品乱又伦| 韩国污动漫无遮掩无删减电脑版| 日本美女抠逼| 爱做久久久久久| 欧美18精品久久久无码午夜福利| 2022年国产精品久久久久| 久久精品影视| 在线 | 果冻国产传媒61国产免费| 黄色软件色多多| 亚洲色欲国产AV精品综合| 韩国黄电影| 亚洲欧美另类无码专区| 激情欧美日韩一区二区| 亚洲视频91| 久久精品国产首叶| 在线亚洲精品国产一区麻豆| 久久久GOGO无码啪啪艺术| 永久免费精品影视网站| 久久久久久久国产精品视频| 在线视频 亚洲| 伦理片在线线249| 97精品伊人久久大香线蕉app| 毛片TV网站无套内射TV网站| 97免费在线视频| 欧美午夜不卡在线观看| 成人精品在线视频| 特黄特色大片免费播放器试看| 国产精品美女久久久久AV超清| 午夜啪啪免费视频| 国产人妻麻豆蜜桃色在线| 亚洲高清视频在线观看| 韩国黄色影院| 中文无码乱人伦中文视频播放| 麻豆三级电影| www.中文字幕在线观看| 乳巨揉みま痴汉电车中文字幕动漫| 国产不卡免费| 亚洲黄色免费在线观看|