說起開關電源的難點問題,PCB布板問題不算很大難點,但若是要布出一個精良PCB板一定是開關電源的難點之一(PCB設計不好,可能會導致無論怎么調試參數(shù)都調試布出來的情況,這么說并非危言聳聽)原因是PCB布板時考慮的因素還是很多的,如:電氣性能,工藝路線,安規(guī)要求,EMC影響等等; 考慮的因素之中電氣是最基本的,但是EMC又是最難摸透的,很多項目的進展瓶頸就在于EMC問題; 下面從二十二個方向給大家分享下PCB布板與EMC。
分享點:熟透電路方可從容進行PCB設計之EMI電路
有的產品EMC很難在源頭上去處理的,可以采用磁環(huán)濾波,當然我這里說的磁環(huán)有二個層面的意思,一方面是輸入輸出端的濾波電感,采用不同材質磁環(huán),不同匝數(shù)會有對應的效果,還有一方面意思是直接在輸入輸出線上套磁環(huán),有時能起到妙用,但不是在所有場合都能用,起碼還是能作為判斷依據(jù);
上圖藍色和黑色線是輸出正負端,上面套了個磁環(huán),解決了輸出整流管引起的高頻端超出; 有些時候端口的干擾在PCB板上加濾波器未必有效果,在輸出線上放磁環(huán)就有想不到的效果。 分享點十五:PCB走線之關鍵信號
注意:
1.CS信號(采樣信號):從采樣電阻R25,R26拉出,注意IC的地線以采樣電阻為基準,采樣電阻的正負差分走線拉倒IC CS腳以及IC 的GND腳。
2.驅動信號從驅動電路拉倒IC驅動引腳,注意不要干擾到CS腳; 如圖走線三根線并排走,并且將地線走在驅動先和CS線中間起到一定屏蔽作用;
3.雙面板最好將IC一層鋪地屏蔽,鋪地的網(wǎng)絡一定要從IC GND引出,非關鍵信號GND可直接打過孔,關鍵信號地需要單點接地,直接接IC;
4.FB反饋網(wǎng)絡信號注意查分走線并且單點接IC;
5.RCD吸收網(wǎng)絡不要放在主回路;
6.VCC的整流濾波地需要接主功率地,二級濾波可接IC 地;
7.Y電容走線單獨接,不可與主功率混淆,避免干擾;
分享點:主功率及控制部分地接線示意圖
可能很多人看到此圖,云里霧里的,大致介紹下:
1.PFC的驅動和IC共地接PFC管,更具體點是接采樣電阻的地;
2.DC-DC部分的驅動地和控制地接DC開關管部分的采樣地;
3.輔助源部分控制地接輔助源mos管采樣第,MOS管地再接主功率地;
4.各自IC的供電地通過輔助源EC濾波接IC地,注意RC濾波靠近IC;
總結:注意好各自的單點接地,地線不亂,是走線最重要的地方之一!!! 分享點十七:電磁場屏蔽機理分析
如圖對照:輸入和輸出的電場干擾可以通過電容傳輸耦合,若增加屏蔽板,則增加了C4的大小,并且C1也會減小,對電場干擾起到衰減的目的; 圖二:磁場屏蔽原理
如圖:磁場屏蔽的特點和磁場不一樣,需要外殼屏蔽,電場只需要平面屏蔽板,故散熱器屏蔽帶來的是電場屏蔽,有的采用外殼封閉式電源則起到了一定磁場屏蔽;
磁場屏蔽原理,磁場通過屏蔽罩會改變磁路,導致磁力線向周圍擴散,中間磁場干擾達到屏蔽目的;
分享點十八:開關器件與EMC
開關器件哪些參數(shù)對EMC有重要影響,我們常說快管,慢管是以什么作為參照的呢? 我們都知道快管開通損耗小,為了做高效率都喜歡用,但是為了EMC順利通過,不得不舍棄效率,降低開關速度來減弱開關輻射;
對于MOS管,開通速度是由驅動電阻與輸入結電容決定的; 關斷速度是由輸出結電容與管子內阻決定;
參照以上兩圖,是不同型號的MOS管,對比下輸入結電容和輸出結電容,2400PF與6800PF; 780PF與2200PF; 一看就知道第一個規(guī)格是快管,第二個是慢管,這時候決定開關速度還要與驅動電阻匹配; 常規(guī)情況驅動電阻在10R-150R比較多,選取驅動電阻與結電容有關,針對快板驅動電阻可適當增大,慢管驅動電阻可適當減小;
對于二極管,有肖特基二極管,快回復二極管,普通二極管,還有一種用的比較少的SIC二極管,開關速度SIC二極管幾乎為零,等于是沒有反向恢復,開關輻射最小,并且損耗也最小,唯一的缺點就是價格昂貴,故很少用; 其次就是肖特基二極管,正向壓降低,反向恢復時間短,依次是快回復和普通二極管; 需要在損耗和EMC之間折中; 一般可采取改吸收以及套磁珠等措施整改EMC;
分享點十九:EMC之濾波器
濾波器的架構選擇對濾波器的影響很重要,在不同場合,濾波器是根據(jù)阻抗匹配來達到濾波效果,大家可根據(jù)此圖的原則參考選取如何濾波; 比如最常用的輸出整流橋后采用π型濾波以及輸出端采用LC濾波器;
濾波器的材質對設計濾波電感也是至關重要,采用不同初始磁導率的材質會在不同頻率段起作用,選錯材質就完全失去應有的效果;
分享點二十:EMC之反激高頻等效模型分析
先從最簡單的模型理解EMC:
EMC的路徑,當然空間輻射是跟環(huán)路有關,環(huán)路也是路徑構造成的; 分析出反激高頻等效模型,幫助理解EMC形成的機理; 我們的測試接收設備會從L,N端接收傳導,為了減小接收的干擾,就必須讓干擾通過地回路流通而不從L,N端口流向接收設備; 這時候我們的EMI電感以及Y電容通過阻抗匹配就可以實現(xiàn); 另外原邊的干擾可以通過原副邊Y電容,變壓器雜散電容以及大地耦合到副邊,形成更多的回路; 當然一些結電容參數(shù),如MOS管結電容,散熱器結電容也能構成流通路徑;
分享點二十一:輻射的形式以及頻率分布
這個圖可能有些抽象,不過正好EMC是很難做到具體,需要給到我們一些啟示,可知:差模輻射是以環(huán)路的形式存在,而共模輻射是以天線的形式發(fā)射; 因此正好印證前面說我們布板的時候開關環(huán)路的布局以及走線的時候不要走銳角,常規(guī)走45度,最好是圓弧走線,當然走線效率會比較低;
這些原理基礎知識理解得好,對實際處理EMC工作以及布板很有用那個,如果沒這種意識,可能毫無用處,因為提供不了直接方法,需要與其他知識想結合;
而且這里提的很多原理東西,在很多EMC資料中是看不到的,而且也沒這么集中,需要反復體會!
如圖:一些頻率端與開關電源產生部位的關系,這只是一般規(guī)律,不要完全相信; 既是規(guī)律又不能盡信是為什么? 規(guī)律并不是在所有情況下成立,不同電源的差異也很大,所以原理是幫你分析,而不是按照方法去硬套;
分享點二十二:
EMC實例
審核編輯:湯梓紅
-
pcb
+關注
關注
4319文章
23105瀏覽量
398087 -
開關電源
+關注
關注
6465文章
8342瀏覽量
482199 -
PCB設計
+關注
關注
394文章
4689瀏覽量
85685 -
emc
+關注
關注
170文章
3925瀏覽量
183253 -
布板
+關注
關注
0文章
10瀏覽量
6769
原文標題:22個方向分享PCB布板與EMC
文章出處:【微信號:電子技術控,微信公眾號:電子技術控】歡迎添加關注!文章轉載請注明出處。
發(fā)布評論請先 登錄
相關推薦
評論