01 Miller效應
一、簡介
MOS管的米勒效應會在高頻開關電路中,延長開關頻率、增加功耗、降低系統穩定性,可謂是臭名昭著,各大廠商都在不遺余力的減少米勒電容。
下面波形是在博文 ZVS振蕩電路工作原理分析[1] 中觀察到振蕩 MOS 管柵極電壓與漏極電壓波形。可以看到柵極電壓在上升階段具有一個平坦的小臺階。這就是彌勒效應所帶來的 MOS 管驅動電壓波形的變化。
圖1.1.1 ZVS振蕩電路MOS管柵極電壓波形
二、仿真波形
為了說明 MOS 管的 Miller 效應,下面在 LTspice 中搭建了最簡單的 MOS 管開關電路。
圖1.2.1 MOS管開關電路
下面給出了 MOS 管 M1 的漏極與柵極電壓波形,可以清楚的看到柵極電壓在上升與下降階段都出現了小臺階。
圖1.2.2 Miller效應仿真結果 R1=5kOhm
為了分析臺階產生的過程, 下圖給出了仿真電路中 MOS 管的柵極電壓與電流波形。
圖1.2.3 MOS管柵極電壓與電流波形
可以看到 MOS 管柵極電流包括三個階段:
● 階段1:柵極電壓快速上升,電流呈現先快后慢的電容充電過程;
● 階段2:柵極電壓呈現平臺,電流急劇線性增加;
● 階段3:柵極電壓與電流都呈現電容充電過程;
圖1.2.4 MOS管導通過程的三個階段
三、Miller 原理說明
下圖是一般 MOS 管三個電極之間的分布電容示意圖。其中:Cgs稱為GS寄生電容,Cgd稱為GD寄生電容,輸入電容Ciss=Cgs+Cgd,輸出電容Coss=Cgd+Cds,反向傳輸電容Crss=Cgd,也叫米勒電容。
圖1.3.1 MOS管分布電容
米勒效應的罪魁禍首就是米勒電容,米勒效應指其輸入輸出之間的分布電容Cgd在反相放大的作用下,使得等效輸入電容值放大的效應,米勒效應會形成米勒平臺。
上面描述柵極電壓、電流變化三個階段分別是:
● 階段1:柵極電壓從 0V 開始增加到 MOS 管導通過程。在此過程中, Miller 電容不起作用,是驅動電壓通過柵極電阻給 Cgs 充電過程;
● 階段2:MOS 管導通,使得 MOS 管漏極電壓下降,通過 Miller 電容將柵極充電電流吸收到漏極,造成 Cgs 充電減小,形成電壓平臺;
● 階段3:Miller 電容充滿,柵極電流向 Cgs, Cgd 充電,直到充電結束。
那米勒效應的缺點是什么呢?下圖顯示了在電感負載下,由于 Miller 效應 MOS管的開關過程明顯拉長了。MOS管的開啟是一個從無到有的過程,MOS管D極和S極重疊時間越長,MOS管的導通損耗越大。因為有了米勒電容,有了米勒平臺,MOS管的開啟時間變長,MOS管的導通損耗必定會增大。
圖1.3.2 MOS管在電感負載下的電流電壓圖
四、消除Miller效應
首先我們需要知道的一個點是:因為MOS管制造工藝,必定產生Cgd,也就是米勒電容必定存在,所以米勒效應不可避免。在上述 MOS 開關電路中,徹底消除Miller 效應是不可能的。但可以通過減少柵極電阻 Rg來減少 Miller 效應的 影響。下圖是將柵極電阻 Rg 減少到 100Ω,可以看到柵極電壓中的 Miller 平臺就變得非常微弱了。
圖1.3.4 減少MOS管柵極電阻 Rg=100Ω對應的柵極電壓與電流波形
MOS管的開啟可以看做是輸入電壓通過柵極電阻R1對寄生電容Cgs的充電過程,R1越小,Cgs充電越快,MOS管開啟就越快,這是減小柵極電阻,米勒平臺有改善的原因。
五、利用Miller效應
MOS 管的 Miller 也不是一無是處,也可以利用 Miller 效應,實現電路緩啟動的目的。認為的增加 MOS 管的柵極電阻,并在 MOS 管的漏極與柵極之間并聯大型電容,可以人為拉長 Miller 臺階。
在下面電路中,認為的增加了柵極電阻和漏極和柵極之間的并聯電容,找元器件現貨上唯樣商城這樣就可以大大延長 Miller臺階的過程。輸出的波形形成了一個三角脈沖的形式。
圖1.5.1 人為增加柵極電阻和漏柵極之間的電容
圖1.5.2 人為拉長 Miller 臺階過程
下面電路是利用了 PMOS 管上的 Miller 電容,實現了輸出電壓的緩啟動,是用于一些電源上升速率有嚴格要求的場合。
圖1.5.3 利用PMOS的Miller 效應完成電源的緩啟動
總結
本文對于 MOS 管工作在開關狀態下的 Miller 效應的原因與現象進行了分析。巧妙的應用 Miller 效應可以實現電源的緩啟動。
來源:TsinghuaJoking,卓晴
審核編輯:湯梓紅
-
振蕩器
+關注
關注
28文章
3840瀏覽量
139169 -
MOS管
+關注
關注
108文章
2425瀏覽量
67094
發布評論請先 登錄
相關推薦
評論