色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

MCM應用于GPU還需要多久

FPGA之家 ? 來源:FPGA之家 ? 作者:FPGA之家 ? 2022-08-14 14:50 ? 次閱讀

消費用戶市場,普通用戶都能用上16核甚至64核處理器的PC。這可不是單純堆核心就完事兒的。以當前CPU核心的規模,和可接受的成本,消費電子設備上一顆芯片就達到這種數量的核心數目,與chiplet的應用是分不開的。

Chiplet是這兩年業界的香餑餑。前不久的ISSCC會議上,chiplet也是今年的熱門議題。AMD從Zen架構開始,Ryzen系列處理器就全面應用了chiplet技術。Chiplet并不是什么新技術,更早提的MCM(multi-chip module)就是應用了chiplet的一種芯片方案。

簡單來說,MCM通常是指將多個die(多個IC或chips)封裝到一起的多芯片模組。構成MCM的一個個die,或者功能電路模塊,即是chiplet。多個chiplet之間能夠協作,構成更大的芯片,也就是MCM(有時,MCM/Multi-chip Package又被當做某一類封裝方式)。

不過本文探討的MCM/chiplet可能有一定程度的窄化,這里不探討類似Intel Kaby Lake G那一類方案,即便它算是典型的chiplet應用(以及像很多近代Intel處理器那樣只將處理器die和PCH die分開的那類chiplet,以及HBM存儲chiplet)。可能單純稱其為MCM會更合理。

以AMD的Ryzen 3000系列處理器為例,每4個核心(外加cache)組成一個CCX,兩個CCX就組成一個CCD——也就是一個die或chiplet。一顆處理器芯片上就會有多個這樣的CCD。另外還有個I/O die作為通訊中心(cIOD),連接各個die,如上圖所示。

值得一提的是,Ryzen 3000處理器的CCD部分制造采用7nm工藝,而cIOD則選擇了12nm工藝,這就很能體現chiplet在制造上物盡其用、節約成本的優越性了。

如果說處理器的chiplet/MCM商用已經全面落地,那么die size更大的GPU能不能也采用MCM的方案?這是本文要探討的話題,MCM應用于GPU還需要多久?借此也能窺見chiplet作為此類高算力芯片的技術方向時,半導體制造已經走到了哪里。

當GPU的die尺寸大到嚇人的程度時

如果只看消費市場,骨灰級玩家對GPU算力的追求是無止盡的。只怕算力不夠,不怕價格、功耗有多夸張。圖形算力的饑渴從未停止過:1998年3dfx引入SLI技術,即2個或者更多的顯卡一起上,實現更大規模的圖形并行計算。

SLI同類技術(包括AMD的CrossFire)并未大規模普適,主要是因為這樣的技術不僅有硬件級別的支持要求,而且對游戲開發者也有要求。在很多不支持多GPU并行計算的游戲中,此類方案甚至會令游戲體驗變差。不過多GPU擴展的方案,在當代數據中心還是比較常見的。

基于這個思路,如果將多GPU的層級下沉到多die——也就是一個GPU之上,有多個chiplet,堆砌更多的圖形計算單元,好像也是完全行得通的方案。只不過多GPU(或多芯顯卡)需要跨系統或者跨板級,而多die則是基于同一個基板的封裝級方案,延遲和帶寬理論上也比跨PCB板更有優勢才對。

那么為什么不直接將現在的GPU做得更大,在一顆die上堆更多的計算資源呢(也就是所謂的monolithic)?如果摩爾定律恒定持續,同面積內容納更多晶體管,則這種方案是可持續的。但在摩爾定律放緩的情況下,要在一顆die上塞下更多的圖形計算核心,尺寸和成本都是無法接受的。

目前的顯卡主流產品,AMD Radeon RX 6900XT的單die尺寸達到了519mm2,英偉達Geforce RTX 3090則達到628mm2。這種die尺寸也算是不惜血本的代表了,逐漸逼近光刻機可處理的最大尺寸(rectile limit, 858mm2)。未來再給GPU加計算核心,單die方案會有極大難度。這是GPU考慮MCM/chiplet方案的先決條件。

從成本來看,這個問題大概會更明朗。即便不考慮切割大面積晶圓可能造成良率低下的問題,更小die也能帶來更高的成本效益。300mm的wafer滿打滿算造114片22x22mm(接近Vega 64尺寸)片單die;如果切分成更小的11x11mm,即原有每片die可獲得4片更小的die,則很大程度減少了晶圓切割邊緣浪費,就能造488片die——如果這些die在理想情況下每4片組成一顆MCM芯片,則產量就高了大約8%。

當然這其中并未考慮wafer不同形狀的優化方案,也沒有考慮制造缺陷之類的問題,而且MCM芯片還需要耗費更多的die來做專門的通訊(比如前文提到Ryzen處理器的I/O die)。但chiplet/MCM能夠實現的成本節約仍然是顯著的。

EE Times專欄作者Don Scansen前不久撰文提到,“AMD計算出,以Chiplet方法制作EPYC處理器時,會需要比單一芯片多出10%的硅晶圓面積做為裸晶對裸晶(die-to-die)的通訊功能區塊、冗余邏輯(redundant logic)以及其他附加功能,但最后整個chiplet形式處理器的芯片成本,比單芯片處理器節省了41%。”

總結一句話,chiplet/MCM本質上是在摩爾定律止步不前的當下,為進一步提高芯片算力,采用的一種控制成本的方案。這里的成本控制實際上還表現在IP的復用和彈性,chiplet有時可以“復制粘貼”的模塊化方式,靈活地存在于芯片之上。AMD如今的Ryzen處理器能夠如此便捷地堆核心,并且在多線程性能表現出對Intel的碾壓優勢,和chiplet是分不開的。

GPU應用chiplet的阻礙

不過GPU要應用chiplet卻并不是一件簡單的事,就好像顯卡SLI(或雙芯顯卡)經過了這么多年,都并未普及開一樣。Raja Koduri此前還在AMD的時候提過,GPU可能會采用Infinity Fabric方案(AMD Ryzen處理器的一種互聯方案);這在當時被認為是MCM型GPU提出的依據。不過眾所周知Raja Koduri后來就離開了AMD,此間規劃的延續性是未知的。

df6d6c10-1aa0-11ed-ba43-dac502259ad0.png

2019年英偉達宣布實驗室打造一款名為RC18的AI處理器。這顆處理器采用16nm工藝,更重要的是選擇了多die解決方案。芯片整體包含36個小型模塊,每個模塊主要由16個PE(Processing Elements)構成,外加RISC-V核及對應的緩存,另外還有英偉達的GRS(Ground-Referenced Signaling)互聯。當時英偉達提到,RC18的存在表明很多技術的可行性,包括可擴展的深度學習架構,以及高效的die-to-die方案。

這顆芯片對于未來的chiplet型GPU而言可能是個重要模板。不過對于圖形計算的GPU而言,在同一顆芯片上渲染畫面幀,要分配到不同chiplet之上,難度還是會比這類AI芯片更大的。2018年AMD RTG團隊高級副總裁David Wang在接受PCGamesN采訪時,曾經提到過MCM GPU要實現起來并不簡單。“我們在看MCM型的實現方法,但目前尚無法定論,傳統游戲圖形計算會應用類似技術。”

“從某種角度來看,其實這也就是在單一封裝上去做CrossFire(AMD版的SLI方案)。其挑戰在于,我們需要能夠做到在硬件層面對開發者不可見,否則其發展就不會順利。”而且,“GPU在NUMA(非一致性內存訪問)架構以及一些特性方面有著一定的限制……”,尤其相比CPU,圖形計算負載的這種設定會更有難度。

這話的意思是指,第一,如果MCM GPU需要游戲開發者去花額外的時間做開發上的調整,或者增加開發難度,則成為推廣MCM GPU的阻礙。第二,不同die之間互聯效率、數據一致性問題:包括在chiplet之間切分圖形計算管線,以及彼此之間存儲訪問的差異性,都會給設計帶來更高的復雜度。

SLI——即以前的多GPU(或板級多芯片GPU)方案實際上是這兩個問題的放大版本。面向開發者時開發難度大;不同GPU之間的工作部署有難度。(而且多GPU方案非常依賴于多層級的系統互聯,這個過程中的數據遷移、同步帶來的功耗問題也比較大;所以最終互聯,達成的有效帶寬和每比特消耗的能量都不盡人意)

其中后一個問題也是chiplet技術演進探討的熱門議題,即便已經商用的chiplet CPU產品,依舊在互聯方面有著持續改進的空間。

Chiplet即將應用于GPU的幾個先兆

MCM GPU真正在這兩年呼聲特別高也不是沒有原因的。其中有幾件標志性事件可能表明MCM GPU離我們并不遙遠了——即便最早一批MCM GPU可能會是面向數據中心的,并在后續才逐漸下放到游戲和圖形計算市場。

首先是Intel這邊,Raja Koduri(沒錯,就是之前AMD的那位)今年一月份在Twitter上發布了一條推文,展示Intel即將推向市場的Xe HPC,如上圖所示——有關Xe GPU,此前介紹十一代酷睿的核顯文章曾大致談到過。Xe面向HPC高性能計算時,作為獨立GPU形態存在。

這枚代號為Ponte Vecchio的芯片看起來還是蔚為壯觀的。就這張圖片來看,這顆GPU計算核心可能主要由上下兩個chiplet構成,圍繞四周的應該是HBM存儲,還有I/O或者其他屬于Xe特性的組成部分。Chiplet之間可能采用Intel的EMIB(Embedded Multi-die Interconnect Bridge)連接。此前Intel也提過Ponte Vecchio之上應用了Foveros 3D堆疊技術,具體情況未知。不過chiplet在GPU上的應用,或者說真正的MCM GPU,在此也是初見端倪的。

除此之外,2019年底Twitter傳出一則泄露消息,稱英偉達新一代Hopper架構(Ampere后續架構)GPU將以MCM的形態問世。

dfb08ebe-1aa0-11ed-ba43-dac502259ad0.png

來源:MCM-GPU: Multi-Chip-Module GPUs for Continued Performance Scalability, Nvidia

事實上,英偉達在2017年的ISCA上就發表過一篇題為MCM-GPU: Multi-Chip-Module GPUs for Continued Performance Scalability的paper。雖然這篇paper中提到的方法,只是在英偉達實驗室里以模擬的方式將MCM GPU,與單die GPU和多GPU方案進行比較,不過表明英偉達的確是有在探討其可行性的。

這篇paper有具體探討不同層級的多芯片方案,比如SLI那樣的多顯卡方案,以及板級多芯方案、同封裝下的多die方案、單die方案等,互聯帶寬和開銷問題;并且認定當代技術儲備,比如說substrate尺寸、die之間信號通訊技術(如英偉達的GRS)都正走向成熟,給MCM GPU的實現開創了技術條件。

dfc52dc4-1aa0-11ed-ba43-dac502259ad0.png

dfdda250-1aa0-11ed-ba43-dac502259ad0.png

此外這篇paper提到了幾個優化方案,包括引入L1.5 cache,不同chiplet之間線程調度和數據劃分方案。從這套方案的結果來看(如上圖),雖然某些測試項有不盡人意之處,但整體上MCM GPU能夠實現在性能上比多GPU方案的顯著領先(且功耗遙遙領先,0.5 pJ/bit vs 10 pJ/bit),而且性能較同計算硬件資源的單die方案,并沒有太大損失(而且需要注意,這種單die方案現實中是造不出來的)。而相比目前能夠制造的最大單die方案(128 SM單元),英偉達預設中的這套方案有45.5%的性能優勢。

文中提及將這樣的方案應用在HPC大規模集群中,能夠極大提升性能密度,系統層級減少機柜數量,以及對應的系統級網絡、通訊規模變小。最終實現通訊、供電、制冷系統的耗電量極大節約。只不過這篇paper,整體上更多仍停留于紙面和模擬。

dff01714-1aa0-11ed-ba43-dac502259ad0.png

最后AMD作為已經在CPU之上推開chiplet的市場玩家,今年年初浮現一則其2019年申請的專利,名為”GPU Chiplets using High Bandwidth Crosslinks”。這項專利的很大一部分,旨在解決MCM GPU在開發層面困難的問題。

這項專利提到系統中包含一個CPU。它在通訊上與GPU chiplet陣列的第一顆chiplet連接。CPU和這顆GPU chiplet通過一條總線連接;而這顆GPU chiplet和后面的chiplet則通過一種passive crosslink連接。這里的passive crosslink實際上是個被動interposer die,專門用于chiplet之間的通訊,以及負責將SoC功能切分成更小的chiplet。(如上圖所示)

e004dbc2-1aa0-11ed-ba43-dac502259ad0.png

針對存儲一致性問題,每顆GPU chiplet都會有其各自的LLC(last-level cache),也就是L3 cache。LLC跨所有的chiplet實現一致性,也是實現跨chiplet存儲一致性乃至提升MCM GPU效率的關鍵。

這套系統中,僅第一顆GPU chiplet接收來自CPU的請求,這樣一來對CPU而言,GPU就好像是傳統的單die方案一樣,對圖形計算開發也就比較友好了。未知AMD是否已將這項專利付諸實現,GPU本身內部的通訊延遲理論上可能會更高。

不過如前所述,MCM GPU最早應用的理論上可能還是數據中心、HPC這些領域。畢竟如英偉達在paper中所述,這樣的設計對于數據中心具備了更天然的替代優勢。而在技術逐步準備就緒之際,MCM GPU的出現的確只是時間問題,包括下放到游戲市場。Intel、AMD和英偉達,哪家將率先踏出這一步,也是值得拭目以待的。

審核編輯:彭靜
聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 處理器
    +關注

    關注

    68

    文章

    19349

    瀏覽量

    230324
  • gpu
    gpu
    +關注

    關注

    28

    文章

    4754

    瀏覽量

    129083
  • MCM
    MCM
    +關注

    關注

    1

    文章

    68

    瀏覽量

    22353

原文標題:GPU越做越大,快到極限了怎么辦?

文章出處:【微信號:zhuyandz,微信公眾號:FPGA之家】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    ADC324x的CLK和SYSREF信號由CDCE62005提供合適嗎?是否還需要向FPGA提供SYSREF信號?

    你好,我想將ADC324X采集到的數據給FPGA,實在不太確定這個SYSREF信號怎么配置,如下圖所示。ADC324x的CLK和SYSREF信號由CDCE62005提供合適嗎?是否還需要向FPGA
    發表于 01-02 06:15

    ADS1293EVM如果用ubs連接電腦,還需要外部供電嗎?

    你好,我是一名在校大學生,剛剛接觸ADS1293問題多多,請問如果用ubs連接電腦,還需要外部供電嗎?是不是只需要四根線將電極和輸入端口連接,就可以用自帶的軟件測出心電圖?萬分感謝!
    發表于 01-01 06:42

    請問DP83822IRHB該PHY要配成RGMII時,到底還需要哪些配置?

    XI_50配置成0,那么就配置成了RGMII,時鐘25MHz的模式。 但是當RX_ER配成模式2或3時,無法進行以太網通訊,發現沒有TX_CK;而當RX_ER配置成模式4時,雖然也無法進行以太網通訊,但是TX_CK是存在的。 請問DP83822IRHB該PHY要配成RGMII時,到底還需要哪些配置,謝謝!
    發表于 12-16 08:09

    DAC5681z從FPGA讀數據,為什么還需要一個DCLKP/N呢?

    以DAC5681z為例,DAC芯片從FPGA讀數據,然后按照自己的采樣速率CLKIN/CLKINC 每隔16bit轉換成1個電平值,為什么還需要一個DCLKP/N呢?
    發表于 12-11 07:52

    企業上云后還需要數據庫運維嗎?真實答案看過來!

    企業上云后還需要數據庫運維嗎?企業上云后,數據庫運維仍然是必不可少的。盡管云計算帶來了許多便利和自動化功能,但數據庫作為企業核心數據存儲和管理的關鍵組件,其運維工作依然需要高度重視。以下是UU云小編對這一觀點的詳細闡述:
    的頭像 發表于 11-08 10:02 ?152次閱讀

    通過DSP6455的MCBSP配置TLV320AIC20,如果想使用LINEI和LINEO,還需要哪些別的配置嗎?

    值為1V的信號輸入LINEI,可是發現讀到的數據和沒給信號時并未發生變化。由于操作過程是接收一段時間數據,然后發送一段時間數據,測量LINEO時,可以發現LINEO的輸出是斷斷續續的,說明輸出的數據通路應該是正常的。如果想使用LINEI和LINEO,還需要哪些別的配置嗎?
    發表于 11-04 07:45

    為什么FPGA屬于硬件,還需要搞算法?

    交流學習,共同進步。 交流問題(一) Q:為什么FPGA屬于硬件,還需要搞算法? 剛入門準備學fpga但一開始學的是語法,感覺像是電路用軟件語言描述出來,fpga不用會pcb
    發表于 09-09 16:54

    含有內部ESD保護的運放,外部保護還需要加嗎?

    含有內部ESD保護的運放,外部保護還需要加嗎?因為加外部ESD保護有一定的漏電流存在, 這個會使電路失去一定的精度
    發表于 09-04 06:54

    暢玩《黑神話:悟空》,除了“官配”硬件還需要注意這些......

    暢玩《黑神話:悟空》,除了“官配”硬件還需要注意這些......
    的頭像 發表于 08-30 14:58 ?477次閱讀
    暢玩《黑神話:悟空》,除了“官配”硬件<b class='flag-5'>還需要</b>注意這些......

    有了MES、ERP,為什么還需要QMS?

    ? 有了MES、ERP,質量管理為什么還需要QMS? ?在制造業,質量管理始終是企業管理中永恒的主題。品質管理要想做得更好,企業必須掌握足夠多、足夠有用的數據和信息,實現質量管理信息化。很多中小企業
    的頭像 發表于 08-02 10:09 ?304次閱讀
    有了MES、ERP,為什么<b class='flag-5'>還需要</b>QMS?

    ESP-IDF Tools Offline5.0下的離線安裝包,為什么安裝時還需要從github中下載?

    如題 我都已經下載的是離線的安裝包了為什么安裝時還需要從github中下載???? 半個小時了 才下載2%
    發表于 06-13 08:14

    使用esp32c3開發matter時,開發好的產品還需要走matter官方認證流程獲得認證嗎?

    使用esp32c3開發matter時,(SDK使用esp-matter),使用這個芯片開發matter的話,開發好的產品還需要走matter官方認證流程獲得認證嗎?詢問其他人時他們說是需要經過一個
    發表于 06-11 07:46

    在freertos中,每個任務都是一個死循環,那么還需要使用看門狗嗎?

    在freertos中,每個任務都是一個死循環,那么還需要使用看門狗嗎?該怎么使用?
    發表于 05-07 06:55

    請問risc-v中斷還需要軟件保存上下文和恢復嗎?

    risc-v中斷還需要軟件保存上下文和恢復嗎?
    發表于 02-26 07:40

    #2024,立Flag了嘛? #學習spinal HDL還需要學習對應的Scala語言

    學習spinal HDL還需要學習對應的Scala語言,但是spinal HDL直接貼近硬件編程,不知道對于學習spinal HDL有什么好的建議?
    發表于 01-21 11:11
    主站蜘蛛池模板: 乌克兰成人性色生活片| 亚洲乱亚洲乱妇在线观看| 亚洲在线v观看免费国| 含羞草最新版本| 亚洲国产精品天堂在线播放| 国产精品永久免费| 亚洲AV无码国产精品午夜久久| 国产亚洲视频在线播放香蕉| 性欧美金发洋妞xxxxbbbb| 国产毛片女人高潮叫声| 亚洲激情一区| 老司机试看午夜| GOGOGO高清在线播放免费| 日韩 无码 手机 在线| 国产精品亚洲精品久久国语| 亚洲国产成人精品无码区APP| 国内精品人妻无码久久久影院蜜桃| 亚洲欧美一区二区三区导航| 九九热免费在线观看| 67194成在线观看免费| 日本xxxx19| 果冻传媒 在线播放观看| 影音先锋亚洲AV少妇熟女| 美女18黄| 广西美女色炮150p图| 亚洲精品国产高清不卡在线| 久久亚洲国产精品亚洲| WRITEAS检查身体| 无码AV精品久久一区二区免费| 果冻传媒2021精品影视| 51精品国产AV无码久久久密桃| 人妻超级精品碰碰在线97视频| 国产精品国产三级国产an| 一二三四在线观看高清电视剧 | 国语自产二区高清国语自产拍| 在线 | 果冻国产传媒61国产免费| 男人团apk| 国产精品爽爽久久久久久无码| 亚洲综合无码一区二区| 欧美 日韩 无码 有码 在线| 国产成人免费观看|