原歸正傳,讓我開始說說人臉這個技術(shù),真的是未來不可估計的IT技術(shù),不知道未來會有多少企業(yè)為了這個技術(shù)潛心研究,現(xiàn)在就來看看最近的技術(shù)和未來的發(fā)展吧!
我先大概說下遇到的一些問題:
?圖像質(zhì)量
人臉識別系統(tǒng)的主要要求是期望高質(zhì)量的人臉圖像,而質(zhì)量好的圖像則在期望條件下被采集。圖像質(zhì)量對于提取圖像特征很重要,因此,即使是最好的識別算法也會受圖像質(zhì)量下降的影響;
?照明問題
同一張臉因照明變化而出現(xiàn)不同,照明可以徹底改變物體的外觀;
?姿勢變化
從正面獲取,姿勢變化會產(chǎn)生許多照片,姿態(tài)變化難以準確識別人臉;
?面部形狀/紋理隨著時間推移的變化
有可能隨著時間的推移,臉的形狀和紋理可能會發(fā)生變化;
?相機與人臉的距離
如果圖像是從遠處拍攝的,有時從較長的距離捕獲的人臉將會遭遇質(zhì)量低劣和噪音的影響;
?遮擋
用戶臉部可能會遮擋,被其他人或物體(如眼鏡等)遮擋,在這種情況下很難識別這些采集的臉。
就先說這些問題吧,還有其他問題,讀者你可以自己再去總結(jié)一些,其實很easy!
在沒有DL出現(xiàn)之前,大家都是在用傳統(tǒng)的機器算法和統(tǒng)計學的算法來對以上問題進行研究,仔細想想,大牛真的好厲害,能想出那么多經(jīng)典的算法,下面我先簡單介紹幾個:
Adaboost人臉檢測算法,是基于積分圖、級聯(lián)檢測器和Adaboost算法的方法,該方法能夠檢測出正面人臉且檢測速度快。其核心思想是自動從多個弱分類器的空間中挑選出若干個分類器,構(gòu)成一個分類能力很強的強分類器。
缺點:而在復雜背景中,AdaBoost人臉檢測算法容易受到復雜環(huán)境的影響,導致檢測結(jié)果并不穩(wěn)定,極易將類似人臉區(qū)域誤檢為人臉,誤檢率較高。
2)基于特征的方法(引用“Summary of face detection based on video”)
基于特征的方法實質(zhì)就是利用人臉的等先驗知識導出的規(guī)則進行人臉檢測。
①邊緣和形狀特征:人臉及人臉器官具有典型的邊緣和形狀特征,如人臉輪廓、眼瞼輪廓、虹膜輪廓、嘴唇輪廓等都可以近似為常見的幾何單元;
②紋理特征:人臉具有特定的紋理特征,紋理是在圖上表現(xiàn)為灰度或顏色分布的某種規(guī)律性,這種規(guī)律性在不同類別的紋理中有其不同特點;
③顏色特征:人臉的皮膚顏色是人臉表面最為顯著的特征之一,目前主要有RGB,HSV,YCbCr,YIQ,HIS等彩色空間模型被用來表示人臉的膚色,從而進行基于顏色信息的人臉檢測方法的研究。
3) 基于模板的方法
基于模板匹配的方法的思路就是通過計算人臉模板和待檢測圖像之間的相關(guān)性來實現(xiàn)人臉檢測功能的,按照人臉模型的類型可以分為兩種情況:
①基于通用模板的方法,這種方法主要是使用人工定義的方法來給出人臉通用模板。對于待檢測的人臉圖像,分別計算眼睛,鼻子,嘴等特征同人臉模板的相關(guān)性,由相關(guān)性的大小來判斷是否存在人臉。通用模板匹配方法的優(yōu)點是算法簡單,容易實現(xiàn),但是它也有自身缺點,如模板的尺寸、大小、形狀不能進行自適應(yīng)的變化,從而導致了這種方法適用范圍較窄;
②基于可變形模板的方法,可變形模板法是對基于幾何特征和通用模板匹配方法的一種改進。通過設(shè)計一個可變模型,利用監(jiān)測圖像的邊緣、波峰和波谷值構(gòu)造能量函數(shù),當能量函數(shù)取得最小值時,此時所對應(yīng)的模型的參數(shù)即為人臉面部的幾何特征。這種方法存在的不足之處在于能量函數(shù)在優(yōu)化時十分復雜,消耗時間較長,并且能量函數(shù)中的各個加權(quán)系數(shù)都是靠經(jīng)驗值確定的,在實際應(yīng)用中有一定的局限性。
4) 基于統(tǒng)計理論的方法
基于統(tǒng)計理論的方法是指利用統(tǒng)計分析與機器學習的方法分別尋找人臉與非人臉樣本特征,利用這些特征構(gòu)建分類,使用分類進行人臉檢測。它主要包括神經(jīng)網(wǎng)絡(luò)方法,支持向量機方法和隱馬爾可夫模型方法。基于統(tǒng)計理論的方法是通過樣本學習而不是根據(jù)人們的直觀印象得到的表象規(guī)律,因此可以減小由于人眼觀測不完整和不精確帶來的錯誤而不得不擴大檢測的范圍,但是這種方法需要大量的統(tǒng)計特性,樣本訓練費時費力。
以上也都是通過快速閱讀得到的一些結(jié)論,大部分都是直接引用文章作者的語句。其中在這些方法中,都有很多改進,比如PCA+Adaboost,HMM等。
現(xiàn)在用傳統(tǒng)的技術(shù)已經(jīng)不能再有新的突破,所以現(xiàn)在流行了DL架構(gòu),打破了人類的極限,又將檢測,識別,跟蹤等技術(shù)上升到另一個高度。
現(xiàn)在來簡單講講最近幾年神經(jīng)網(wǎng)絡(luò)的牛X之處。
1)Retinal Connected Neural Network (RCNN)
2)Rotation Invariant Neural Network (RINN)
3)Principal Component Analysis with ANN (PCA & ANN)
4)Evolutionary Optimization of Neural Networks
5)Multilayer Perceptron (MLP)
6) Gabor Wavelet Faces with ANN
還有好多就不一一介紹了。在此推薦讀者你閱讀《Recent Advances in Face Detection》,分析的特別詳細,希望對大家有幫助,謝謝!
下面我來給大家提供一些公開的數(shù)據(jù)庫:
■Annotated Database (Hand, Meat, LV Cardiac, IMM face) (http://www2.imm.dtu.dk/~aam/)
■AR Face Database (http://cobweb.ecn.purdue.edu/~aleix/aleix_face_DB.html)
■BioID Face Database (https://www.bioid.com/About/BioID-Face-Database)
■Caltech Computational Vision Group Archive (Cars, Motorcycles, Airplanes, Faces, Leaves, Background) (http://www.vision.caltech.edu/html-files/archive.html)
■Carnegie Mellon Image Database (motion, stereo, face, car, ...) (http://vasc.ri.cmu.edu/idb/)
■CAS-PEAL Face Database (http://www.jdl.ac.cn/peal/index.html)
■CMU Cohn-Kanade AU-Coded Facial Expression Database (http://www.ri.cmu.edu/projects/project_421.html
■CMU Face Detection Databases (http://www.ri.cmu.edu/projects/project_419.html)
■CMU Face Expression Database (http://amp.ece.cmu.edu/projects/FaceAuthentication/download.htm)
■CMU Face Pose, Illumination, and Expression (PIE) Database (http://www.ri.cmu.edu/projects/project_418.html)
■CMU VASC Image Database (motion, road sequences, stereo, CIL’s stereo data with ground truth, JISCT, face, face expressions, car) (CMU VASC Image Database)
■Content-based Image Retrieval Database (Index of /groundtruth)
■Face Video Database of the Max Planck Institute for Biological Cybernetics (Welcome)
■FERET Database (frvt.org)
■FERET Color Database (The Color FERET Databasehttp://face.nist.gov/colorferet/)
■Georgia Tech Face Database (http://www.anefian.com/face_reco.htm)
■German Fingerspelling Database (http://www.anefian.com/face_reco.htm)
■Indian Face Database (http://http://www.cs.umass.edu/~vidit/IndianFaceDatabase)
■MIT-CBCL Car Database (Pedestrian Data)
■MIT-CBCL Face Recognition Database (CBCL FACE RECOGNITION DATABASE)
■MIT-CBCL Face Databases (CBCL SOFTWARE)
■MIT-CBCL Pedestrian Database (New Page 1)
■MIT-CBCL Street Scenes Database (CBCL StreetScenes Database Download Page:)
■NIST/Equinox Visible and Infrared Face Image Database (http://www.equinoxsensors.com/products/HID.html)
■NIST Fingerprint Data at Columbia (Link)
■ORL Database of Faces (The Database of Faces)
■Rutgers Skin Texture Database (http://www.caip.rutgers.edu/rutgers_texture/)
■The Japanese Female Facial Expression (JAFFE) Database (Japanese Female Facial Expression (JAFFE) Database
■The Ohio State University SAMPL Image Database (3D, still, motion) (http://sampl.ece.ohio-state.edu/database.htm)
■The University of Oulu Physics-Based Face Database (Center for Machine Vision and Signal Analysis)
■UMIST Face Database (https://images.ee.umist.ac.uk/danny/database.html)
■USF Range Image Data (with ground truth) (USF Range Image Database)
■Usenix Face Database (hundreds of images, several formats) (Link)
■UCI Machine Learning Repository (http://www1.ics.uci.edu/~mlearn/MLSummary.html)
■USC-SIPI Image Database(collection of digitized images) (SIPI Image Database)
■UCD VALID Database (multimodal for still face, audio, and video) (VALID Database)
■UCD Color Face Image (UCFI) Database for Face Detection (http://ee.ucd.ie/~prag/)
■UCL M2VTS Multimodal Face Database (http://www.tele.ucl.ac.be/PROJECTS/M2VTS/m2fdb.html)
■Vision Image Archive at UMass (sequences, stereo, medical, indoor, outlook, road, underwater, aerial, satellite, space and more) (SIPI Image Database)
■Where can I find Lenna and other images? (comp.compression Frequently Asked Questions (part 1/3)Section - [55] Where can I find Lenna and other images?)
■Yale Face Database (http://cvc.yale.edu/projects/yalefaces/yalefaces.html)
■Yale Face Database B (http://cvc.yale.edu/projects/yalefaces/yalefaces.html)
最后我附上我近期做的效果圖,是基于視頻中人臉檢測與識別的,因為沒有標準,公共的數(shù)據(jù)集,所以我就用室內(nèi)場景劇作為訓練數(shù)據(jù),最后的效果很不錯,希望以后有同學做人臉的,我們可以一起討論,共同進步,謝謝!
審核編輯 :李倩
-
算法
+關(guān)注
關(guān)注
23文章
4626瀏覽量
93163 -
人臉檢測
+關(guān)注
關(guān)注
0文章
80瀏覽量
16481
原文標題:人臉檢測與識別的趨勢和分析
文章出處:【微信號:vision263com,微信公眾號:新機器視覺】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。
發(fā)布評論請先 登錄
相關(guān)推薦
評論