機器學(xué)習(xí)是一門多領(lǐng)域交叉學(xué)科,涉及概率論、統(tǒng)計學(xué)、逼近論、凸分析、算法復(fù)雜度理論等多門學(xué)科。專門研究計算機怎樣模擬或?qū)崿F(xiàn)人類的學(xué)習(xí)行為,以獲取新的知識或技能,重新組織已有的知識結(jié)構(gòu)使之不斷改善自身的性能。
機器學(xué)習(xí)必學(xué)10大算法
1.線性回歸
2.Logistic 回歸
3.線性判別分析
4.分類和回歸樹
5.樸素貝葉斯
6.K最近鄰算法
7.學(xué)習(xí)向量量化
8.支持向量化
9.袋裝發(fā)和隨機森林
10.Boosting 和 AdaBoost
機器學(xué)習(xí)中必知必會的 8 種降維技術(shù)
1.相關(guān)性濾波器
2.方差濾波器
3.UMAP
4.t-SNE
5.自動編碼器(Auto Encoder )
6.缺失值
7.前向/后向特征選擇
8.主成分分析
整合自:機器學(xué)習(xí)社區(qū)百度百科機器之心
審核編輯:金橋
聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。
舉報投訴
相關(guān)推薦
前言 由于本人最近在學(xué)習(xí)一些機器算法,AI 算法的知識,需要搭建一個學(xué)習(xí)環(huán)境,所以就在最近購買的華為云 Flexus X 實例上安裝了
發(fā)表于 01-02 13:43
?99次閱讀
在上一篇文章中,我們介紹了機器學(xué)習(xí)的關(guān)鍵概念術(shù)語。在本文中,我們會介紹傳統(tǒng)機器學(xué)習(xí)的基礎(chǔ)知識和多種算法特征,供各位老師選擇。 01 傳統(tǒng)
發(fā)表于 12-30 09:16
?259次閱讀
在人工智能領(lǐng)域,機器學(xué)習(xí)算法是實現(xiàn)智能系統(tǒng)的核心。隨著數(shù)據(jù)量的激增和算法復(fù)雜度的提升,對計算資源的需求也在不斷增長。NPU作為一種專門為深度
發(fā)表于 11-15 09:19
?515次閱讀
隨著人工智能技術(shù)的飛速發(fā)展,機器學(xué)習(xí)算法在各個領(lǐng)域中扮演著越來越重要的角色。長短期記憶網(wǎng)絡(luò)(LSTM)作為一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),
發(fā)表于 11-13 10:17
?841次閱讀
近日,天津大學(xué)精密儀器與光電子工程學(xué)院的光子芯片實驗室提出了一種基于深度學(xué)習(xí)的二維拉曼光譜算法,成果以“Rapid and accurate bacteria identificati
發(fā)表于 11-07 09:08
?243次閱讀
一、激光雷達技術(shù)概述 激光雷達技術(shù)是一種基于激光的遙感技術(shù),通過發(fā)射激光脈沖并接收反射回來的光來測量物體的距離和速度。與傳統(tǒng)的雷達技術(shù)相比,
發(fā)表于 10-27 10:57
?434次閱讀
人工智能指的是在某種程度上顯示出類似人類智能的設(shè)備。AI有很多技術(shù),但其中一個很大的子集是機器學(xué)習(xí)——讓算法從數(shù)據(jù)中學(xué)習(xí)。
發(fā)表于 10-24 17:22
?2507次閱讀
如何通過根因分析技術(shù)獲得導(dǎo)致故障的維度和元素,包括基于時間序列異常檢測算法的根因分析、基于熵的根因分析、基于樹模型的根因分析、規(guī)則學(xué)習(xí)等。
●第7章“智能運維的應(yīng)用場景”:介紹智能運
發(fā)表于 08-07 23:03
機器學(xué)習(xí)作為人工智能的一個重要分支,其目標(biāo)是通過讓計算機自動從數(shù)據(jù)中學(xué)習(xí)并改進其性能,而無需進行明確的編程。本文將深入解讀幾種常見的機器學(xué)習(xí)
發(fā)表于 07-02 11:25
?1136次閱讀
隨著大數(shù)據(jù)時代的到來,數(shù)據(jù)量的爆炸性增長對數(shù)據(jù)分析提出了更高的要求。機器學(xué)習(xí)作為一種強大的工具,通過訓(xùn)練模型從數(shù)據(jù)中學(xué)習(xí)規(guī)律,為企業(yè)和組織提供了更高效、更準(zhǔn)確的數(shù)據(jù)分析能力。本文將深入
發(fā)表于 07-02 11:22
?656次閱讀
關(guān)于數(shù)據(jù)機器學(xué)習(xí)就是喂入算法和數(shù)據(jù),讓算法從數(shù)據(jù)中尋找一種相應(yīng)的關(guān)系。Iris鳶尾花數(shù)據(jù)集是一個經(jīng)典數(shù)據(jù)集,在統(tǒng)計
發(fā)表于 06-27 08:27
?1679次閱讀
應(yīng)用,將理論基礎(chǔ)與實踐案例相結(jié)合,作者憑借扎實的數(shù)學(xué)功底及其在企業(yè)界的豐富實踐經(jīng)驗,將機器學(xué)習(xí)與時間序列分析巧妙融合在書中。
全書書共分為8章,系統(tǒng)介紹時間序列的基礎(chǔ)知識、常用預(yù)測方法、異常檢測
發(fā)表于 06-25 15:00
機器學(xué)習(xí)可視化(簡稱ML可視化)一般是指通過圖形或交互方式表示機器學(xué)習(xí)模型、數(shù)據(jù)及其關(guān)系的過程。目標(biāo)是使理解模型的復(fù)雜算法和數(shù)據(jù)模式更容易,
發(fā)表于 04-25 11:17
?439次閱讀
,人工智能已成為一個熱門領(lǐng)域,涉及到多個行業(yè)和領(lǐng)域,例如語音識別、機器翻譯、圖像識別等。 在編程中進行人工智能的關(guān)鍵是使用機器學(xué)習(xí)算法,這是一類基于樣本數(shù)據(jù)和模型訓(xùn)練來進行預(yù)測和判斷的
發(fā)表于 04-04 08:41
?345次閱讀
今天給大家一篇關(guān)于機器學(xué)習(xí)調(diào)參技巧的文章。超參數(shù)調(diào)優(yōu)是機器學(xué)習(xí)例程中的基本步驟之一。該方法也稱為超參數(shù)優(yōu)化,需要搜索超參數(shù)的最佳配置以實現(xiàn)最佳性能。
發(fā)表于 03-23 08:26
?643次閱讀
評論