色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

帶你深入了解GPU、FPGA和ASIC

威臣電子有限公司 ? 來源:浙商證券 ? 作者:楊云 ? 2021-07-27 11:38 ? 次閱讀

人工智能包括三個要素:算法,計算和數(shù)據(jù)。對人工智能的實現(xiàn)來說,算法是核心,計算、數(shù)據(jù)是基礎(chǔ)。在算法上來說,主要分為工程學法和模擬法。

工程學方法是采用傳統(tǒng)的編程技術(shù),利用大量數(shù)據(jù)處理經(jīng)驗改進提升算法性能;模擬法則是模仿人類或其他生物所用的方法或者技能,提升算法性能,例如遺傳算法和神經(jīng)網(wǎng)絡(luò)。而在計算能力來說,目前主要是使用 GPU 并行計算神經(jīng)網(wǎng)絡(luò),同時,FPGAASIC 也將是未來異軍突起的力量。

隨著百度、Google、Facebook、微軟等企業(yè)開始切入人工智能,人工智能可應(yīng)用的領(lǐng)域非常廣泛。可以看到,未來人工智能的應(yīng)用將呈幾何級數(shù)的倍增。

應(yīng)用領(lǐng)域包括互聯(lián)網(wǎng),金融,娛樂,政府機關(guān),制造業(yè),汽車,游戲等。從產(chǎn)業(yè)結(jié)構(gòu)來講,人工智能生態(tài)分為基礎(chǔ)、技術(shù)、應(yīng)用三層。應(yīng)用層包括人工智能+各行業(yè)(領(lǐng)域),技術(shù)層包括算法、模型及應(yīng)用開發(fā),基礎(chǔ)層包括數(shù)據(jù)資源和計算能力。

人工智能將在很多領(lǐng)域得到廣泛的應(yīng)用。目前重點部署的應(yīng)用有:語音識別,人臉識別,無人機機器人無人駕駛等。

1、深度學習

人工智能的核心是算法,深度學習是目前最主流的人工智能算法。深度學習在 1958 年就被提出,但直到最近,才真正火起來,主要原因在于:數(shù)據(jù)量的激增和計算機能力/成本。

深度學習是機器學習領(lǐng)域中對模式(聲音、圖像等等)進行建模的一種方法,它也是一種基于統(tǒng)計的概率模型。在對各種模式進行建模之后,便可以對各種模式進行識別了,例如待建模的模式是聲音的話,那么這種識別便可以理解為語音識別。而類比來理解,如果說將機器學習算法類比為排序算法,那么深度學習算法便是眾多排序算法當中的一種,這種算法在某些應(yīng)用場景中,會具有一定的優(yōu)勢。

深度學習的學名又叫深層神經(jīng)網(wǎng)絡(luò)(Deep Neural Networks ),是從很久以前的人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks)模型發(fā)展而來。這種模型一般采用計算機科學中的圖模型來直觀的表達,而深度學習的“深度”便指的是圖模型的層數(shù)以及每一層的節(jié)點數(shù)量,相對于之前的神經(jīng)網(wǎng)絡(luò)而言,有了很大程度的提升。

從單一的神經(jīng)元,再到簡單的神經(jīng)網(wǎng)絡(luò),到一個用于語音識別的深層神經(jīng)網(wǎng)絡(luò)。層次間的復雜度呈幾何倍數(shù)的遞增。

以圖像識別為例,圖像的原始輸入是像素,相鄰像素組成線條,多個線條組成紋理,進一步形成圖案,圖案構(gòu)成了物體的局部,直至整個物體的樣子。不難發(fā)現(xiàn),可以找到原始輸入和淺層特征之間的聯(lián)系,再通過中層特征,一步一步獲得和高層特征的聯(lián)系。

想要從原始輸入直接跨越到高層特征,無疑是困難的。而整個識別過程,所需要的數(shù)據(jù)量和運算量是十分巨大的。

深度學習之所以能夠在今天得到重要的突破,原因在于:

1、海量的數(shù)據(jù)訓練

2、高性能的計算能力(CPU,GPU,F(xiàn)PGA,ASIC),兩者缺一不可。

2、算力

衡量芯片計算性能的重要指標稱為算力。通常而言,將每秒所執(zhí)行的浮點運算次數(shù)(亦稱每秒峰值速度)作為指標來衡量算力,簡稱為 FLOPS。現(xiàn)有的主流芯片運算能力達到了 TFLOPS 級別。一個 TFLOPS(teraFLOPS)等於每秒萬億(=10^12)次的浮點運算。增加深度學習算力需要多個維度的齊頭并進的提升:

1、系統(tǒng)并行程度

2、時鐘的速度

3、內(nèi)存的大小(包括register、cache、memory);

4、內(nèi)存帶寬(memory bandwidth)

5、計算芯片同 CPU 之間的帶寬

6、還有各種微妙的硬件里的算法改進。

我們這篇報告將主要關(guān)注人工智能的芯片領(lǐng)域,著重討論 GPU,F(xiàn)PGA,ASIC 等幾種類型的芯片在人工智能領(lǐng)域的應(yīng)用和未來的發(fā)展。

3、GPU 簡介

GPU,又稱顯示核心、視覺處理器、顯示芯片,是一種專門在個人電腦、工作站、游戲機和一些移動設(shè)備(如平板電腦、智能手機等)上圖像運算工作的微處理器,與 CPU 類似,只不過 GPU 是專為執(zhí)行復雜的數(shù)學和幾何計算而設(shè)計的,這些計算是圖形渲染所必需的。隨著人工智能的發(fā)展,如今的 GPU 已經(jīng)不再局限于 3D 圖形處理了,GPU 通用計算技術(shù)發(fā)展已經(jīng)引起業(yè)界不少的關(guān)注,事實也證明在浮點運算、并行計算等部分計算方面,GPU 可以提供數(shù)十倍乃至于上百倍于 CPU 的性能。

GPU 的特點是有大量的核(多達幾千個核)和大量的高速內(nèi)存,最初被設(shè)計用于游戲,計算機圖像處理等。GPU主要擅長做類似圖像處理的并行計算,所謂的“粗粒度并行(coarse-grain parallelism)”。

這個對于圖像處理很適用,因為像素與像素之間相對獨立,GPU 提供大量的核,可以同時對很多像素進行并行處理。但這并不能帶來延遲的提升(而僅僅是處理吞吐量的提升)。

比如,當一個消息到達時,雖然 GPU 有很多的核,但只能有其中一個核被用來處理當前這個消息,而且 GPU 核通常被設(shè)計為支持與圖像處理相關(guān)的運算,不如 CPU 通用。GPU 主要適用于在數(shù)據(jù)層呈現(xiàn)很高的并行特性(data-parallelism)的應(yīng)用,比如 GPU 比較適合用于類似蒙特卡羅模擬這樣的并行運算。

CPU 和 GPU 本身架構(gòu)方式和運算目的不同導致了 CPU 和 GPU 之間的不同,主要不同點列舉如下。

正是因為 GPU 的特點特別適合于大規(guī)模并行運算,GPU 在 “深度學習”領(lǐng)域發(fā)揮著巨大的作用,因為 GPU 可以平行處理大量瑣碎信息。深度學習所依賴的是神經(jīng)系統(tǒng)網(wǎng)絡(luò)——與人類大腦神經(jīng)高度相似的網(wǎng)絡(luò)——而這種網(wǎng)絡(luò)出現(xiàn)的目的,就是要在高速的狀態(tài)下分析海量的數(shù)據(jù)。

例如,如果你想要教會這種網(wǎng)絡(luò)如何識別出貓的模樣,你就要給它提供無數(shù)多的貓的圖片。而這種工作,正是 GPU 芯片所擅長的事情。而且相比于 CPU,GPU 的另一大優(yōu)勢,就是它對能源的需求遠遠低于 CPU。GPU 擅長的是海量數(shù)據(jù)的快速處理。

雖然機器學習已經(jīng)有數(shù)十年的歷史,但是兩個較為新近的趨勢促進了機器學習的廣泛應(yīng)用: 海量訓練數(shù)據(jù)的出現(xiàn)以及 GPU 計算所提供的強大而高效的并行計算。人們利用 GPU 來訓練這些深度神經(jīng)網(wǎng)絡(luò),所使用的訓練集大得多,所耗費的時間大幅縮短,占用的數(shù)據(jù)中心基礎(chǔ)設(shè)施也少得多。

GPU 還被用于運行這些機器學習訓練模型,以便在云端進行分類和預測,從而在耗費功率更低、占用基礎(chǔ)設(shè)施更少的情況下能夠支持遠比從前更大的數(shù)據(jù)量和吞吐量。

將 GPU 加速器用于機器學習的早期用戶包括諸多規(guī)模的網(wǎng)絡(luò)和社交媒體公司,另外還有數(shù)據(jù)科學和機器學習領(lǐng)域中一流的研究機構(gòu)。與單純使用 CPU 的做法相比,GPU 具有數(shù)以千計的計算核心、可實現(xiàn) 10-100 倍應(yīng)用吞吐量,因此 GPU 已經(jīng)成為數(shù)據(jù)科學家處理大數(shù)據(jù)的處理器。

綜上而言,我們認為人工智能時代的 GPU 已經(jīng)不再是傳統(tǒng)意義上的圖形處理器,而更多的應(yīng)該賦予專用處理器的頭銜,具備強大的并行計算能力。

國內(nèi)在 GPU 芯片設(shè)計方面,還處于起步階段,與國際主流產(chǎn)品尚有一定的差距。不過星星之火,可以燎原。有一些企業(yè),逐漸開始擁有自主研發(fā)的能力,比如國內(nèi)企業(yè)景嘉微。

景嘉微擁有國內(nèi)首款自主研發(fā)的 GPU 芯片 JM5400,專用于公司的圖形顯控領(lǐng)域。JM5400 為代表的圖形芯片打破外國芯片在我國軍用 GPU 領(lǐng)域的壟斷,率先實現(xiàn)軍用 GPU國產(chǎn)化。GPU JM5400 主要替代 AMD 的 GPU M9,兩者在性能上的比較如下。相比而言,公司的 JM5400 具有功耗低,性能優(yōu)的優(yōu)勢。

4、FPGA簡介

FPGA,即現(xiàn)場可編程門陣列,它是在 PAL、GAL、CPLD 等可編程器件的基礎(chǔ)上進一步發(fā)展的產(chǎn)物。FPGA 芯片主要由 6 部分完成,分別為:可編程輸入輸出單元、基本可編程邏輯單元、完整的時鐘管理、嵌入塊式 RAM、豐富的布線資源、內(nèi)嵌的底層功能單元和內(nèi)嵌專用硬件模塊。

FPGA 還具有靜態(tài)可重復編程和動態(tài)在系統(tǒng)重構(gòu)的特性,使得硬件的功能可以像軟件一樣通過編程來修改。FPGA能完成任何數(shù)字器件的功能,甚至是高性能 CPU 都可以用 FPGA 來實現(xiàn)。

FPGA 擁有大量的可編程邏輯單元,可以根據(jù)客戶定制來做針對性的算法設(shè)計。除此以外,在處理海量數(shù)據(jù)的時候,F(xiàn)PGA 相比于 CPU 和 GPU,獨到的優(yōu)勢在于:FPGA 更接近 IO。換句話說,F(xiàn)PGA是硬件底層的架構(gòu)。

比如,數(shù)據(jù)采用 GPU 計算,它先要進入內(nèi)存,并在 CPU 指令下拷入 GPU 內(nèi)存,在那邊執(zhí)行結(jié)束后再拷到內(nèi)存被 CPU 繼續(xù)處理,這過程并沒有時間優(yōu)勢;

而使用 FPGA 的話,數(shù)據(jù) I/O 接口進入 FPGA,在里面解幀后進行數(shù)據(jù)處理或預處理,然后通過 PCIE 接口送入內(nèi)存讓 CPU 處理,一些很底層的工作已經(jīng)被 FPGA 處理完畢了(FPGA 扮演協(xié)處理器的角色),且積累到一定數(shù)量后以 DMA 形式傳輸?shù)絻?nèi)存,以中斷通知 CPU 來處理,這樣效率就高得多。

雖然 FPGA 的頻率一般比 CPU 低,但 CPU 是通用處理器,做某個特定運算(如信號處理,圖像處理)可能需要很多個時鐘周期,而 FPGA 可以通過編程重組電路,直接生成專用電路,加上電路并行性,可能做這個特定運算只需要一個時鐘周期。

比如一般 CPU 每次只能處理 4 到 8 個指令,在 FPGA 上使用數(shù)據(jù)并行的方法可以每次處理 256 個或者更多的指令,讓FPGA可以處理比CPU多很多的數(shù)據(jù)量。

舉個例子,CPU 主頻 3GHz,F(xiàn)PGA主頻 200MHz,若做某個特定運算 CPU 需要 30 個時鐘周期,F(xiàn)PGA 只需一個,則耗時情況:CPU:30/3GHz =10ns;FPGA:1/200MHz =5ns。可以看到,F(xiàn)PGA 做這個特定運算速度比 CPU 塊,能幫助加速。

北京大學與加州大學的一個關(guān)于 FPGA 加速深度學習算法的合作研究。展示了 FPGA 與 CPU 在執(zhí)行深度學習算法時的耗時對比。在運行一次迭代時,使用 CPU 耗時 375 毫秒,而使用 FPGA 只耗時 21 毫秒,取得了18倍左右的加速比。

FPGA 相對于 CPU 與 GPU 有明顯的能耗優(yōu)勢,主要有兩個原因。首先,在 FPGA 中沒有取指令與指令譯碼操作, 在 Intel 的 CPU 里面,由于使用的是 CISC 架構(gòu),僅僅譯碼就占整個芯片能耗的 50%;

在 GPU 里面,取指令與譯碼也消耗了 10%~20%的能耗。其次,F(xiàn)PGA 的主頻比 CPU 與 GPU 低很多,通常 CPU 與 GPU 都在 1GHz 到 3GHz 之間,而 FPGA 的主頻一般在 500MHz 以下。如此大的頻率差使得 FPGA 消耗的能耗遠低于 CPU 與 GPU。

FPGA與CPU在執(zhí)行深度學習算法時的耗能對比。在執(zhí)行一次深度學習運算,使用 CPU 耗能 36 焦,而使用 FPGA 只耗能 10 焦,取得了 3.5 倍左右的節(jié)能比。通過用 FPGA 加速與節(jié)能,讓深度學習實時計算更容易在移動端運行。

相比CPU和GPU,F(xiàn)PGA 憑借比特級細粒度定制的結(jié)構(gòu)、流水線并行計算的能力和高效的能耗,在深度學習應(yīng)用中展現(xiàn)出獨特的優(yōu)勢,在大規(guī)模服務(wù)器部署或資源受限的嵌入式應(yīng)用方面有巨大潛力。此外,F(xiàn)PGA 架構(gòu)靈活,使得研究者能夠在諸如 GPU 的固定架構(gòu)之外進行模型優(yōu)化探究。

5、ASIC簡介

ASIC(專用集成電路),是指應(yīng)特定用戶要求或特定電子系統(tǒng)的需要而設(shè)計、制造的集成電路。嚴格意義上來講,ASIC 是一種專用芯片,與傳統(tǒng)的通用芯片有一定的差異。是為了某種特定的需求而專門定制的芯片。

ASIC 作為集成電路技術(shù)與特定用戶的整機或系統(tǒng)技術(shù)緊密結(jié)合的產(chǎn)物,與通用集成電路相比,具有以下幾個方面的優(yōu)越性:體積更小、功耗更低、可靠性提高、性能提高、保密性增強、成本降低。回到深度學習最重要的指標:算力和功耗。我們對比 NVIDIA 的 GK210 和某 ASIC 芯片規(guī)劃的指標,如下所示:

從算力上來說,ASIC 產(chǎn)品的計算能力是 GK210 的 2.5 倍。第二個指標是功耗, 功耗做到了 GK210 的 1/15。第三個指標是內(nèi)部存儲容量的大小及帶寬。這個內(nèi)部 MEMORY 相當于 CPU 上的 CACHE。

深度雪地的模型比較大,通常能夠到幾百 MB 到 1GB 左右,會被頻繁的讀出來,如果模型放在片外的 DDR 里邊,對 DDR 造成的帶寬壓力通常會到 TB/S 級別。

全定制設(shè)計的ASIC,因為其自身的特性,相較于非定制芯片,擁有以下幾個優(yōu)勢:

同樣工藝,同樣功能,第一次采用全定制設(shè)計性能提高 7.6 倍

普通設(shè)計,全定制和非全定制的差別可能有 1~2 個數(shù)量級的差異

采用全定制方法可以超越非全定制 4 個工藝節(jié)點(采用 28nm 做的全定制設(shè)計,可能比 5nm 做的非全定制設(shè)計還要好)我們認為,ASIC 的優(yōu)勢,在人工智能深度學習領(lǐng)域,具有很大的潛力。

ASIC 在人工智能深度學習方面的應(yīng)用還不多,但是我們可以拿比特幣礦機芯片的發(fā)展做類似的推理。比特幣挖礦和人工智能深度學習有類似之處,都是依賴于底層的芯片進行大規(guī)模的并行計算。而 ASIC 在比特幣挖礦領(lǐng)域,展現(xiàn)出了得天獨厚的優(yōu)勢。

比特幣礦機的芯片經(jīng)歷了四個階段:CPU、GPU、FPGA 和 ASIC。ASIC 芯片是專為挖礦量身定制的芯片,它將 FPGA 芯片中在挖礦時不會使用的功能去掉,與同等工藝的 FPGA 芯片相比執(zhí)行速度塊,大規(guī)模生產(chǎn)后的成本也要低于 FPGA 芯片。

從 ASIC 在比特幣挖礦機時代的發(fā)展歷史,可以看出 ASIC 在專用并行計算領(lǐng)域所具有的得天獨厚的優(yōu)勢:算力高,功耗低,價格低,專用性強。谷歌最近曝光的專用于人工智能深度學習計算的TPU、其實也是一款 ASIC。

綜上,人工智能時代逐步臨近,GPU、FPGA、ASIC這幾塊傳統(tǒng)領(lǐng)域的芯片,將在人工智能時代迎來新的爆發(fā)。

編輯:jq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • gpu
    gpu
    +關(guān)注

    關(guān)注

    28

    文章

    4754

    瀏覽量

    129069

原文標題:聚焦 | GPU、FPGA和ASIC

文章出處:【微信號:wcdz8888,微信公眾號:威臣電子有限公司】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    ASICGPU的原理和優(yōu)勢

    ? 本文介紹了ASICGPU兩種能夠用于AI計算的半導體芯片各自的原理和優(yōu)勢。 ASICGPU是什么 ASIC
    的頭像 發(fā)表于 01-06 13:58 ?297次閱讀
    <b class='flag-5'>ASIC</b>和<b class='flag-5'>GPU</b>的原理和優(yōu)勢

    如何為不同的電機選擇合適的驅(qū)動芯片?納芯微帶你深入了解

    在現(xiàn)代生活中,電機廣泛使用在家電產(chǎn)品、汽車電子、工業(yè)控制等眾多應(yīng)用領(lǐng)域,每一個電機的運轉(zhuǎn)都離不開合適的驅(qū)動芯片。納芯微提供豐富的電機驅(qū)動產(chǎn)品選擇,本期技術(shù)分享將重點介紹常見電機種類與感性負載應(yīng)用,幫助大家更深入了解如何選擇合適的電機驅(qū)動芯片。
    的頭像 發(fā)表于 12-23 09:58 ?315次閱讀
    如何為不同的電機選擇合適的驅(qū)動芯片?納芯微<b class='flag-5'>帶你</b><b class='flag-5'>深入了解</b>!

    FPGAASIC的區(qū)別 FPGA性能優(yōu)化技巧

    FPGAASIC的區(qū)別 FPGA(現(xiàn)場可編程門陣列)和ASIC(專用集成電路)是兩種不同的集成電路技術(shù),它們在多個方面存在顯著的區(qū)別: FPGA
    的頭像 發(fā)表于 12-02 09:51 ?293次閱讀

    FPGAASIC在大模型推理加速中的應(yīng)用

    隨著現(xiàn)在AI的快速發(fā)展,使用FPGAASIC進行推理加速的研究也越來越多,從目前的市場來說,有些公司已經(jīng)有了專門做推理的ASIC,像Groq的LPU,專門針對大語言模型的推理做了優(yōu)化,因此相比
    的頭像 發(fā)表于 10-29 14:12 ?540次閱讀
    <b class='flag-5'>FPGA</b>和<b class='flag-5'>ASIC</b>在大模型推理加速中的應(yīng)用

    FPGAASIC的優(yōu)缺點比較

    FPGA(現(xiàn)場可編程門陣列)與ASIC(專用集成電路)是兩種不同的硬件實現(xiàn)方式,各自具有獨特的優(yōu)缺點。以下是對兩者優(yōu)缺點的比較: FPGA的優(yōu)點 可編程性強 :FPGA具有高度的可編程
    的頭像 發(fā)表于 10-25 09:24 ?538次閱讀

    深入了解PCI轉(zhuǎn)XMC載板轉(zhuǎn)接卡

    電子發(fā)燒友網(wǎng)站提供《深入了解PCI轉(zhuǎn)XMC載板轉(zhuǎn)接卡.docx》資料免費下載
    發(fā)表于 09-06 14:35 ?0次下載

    深入了解 MEMS 振蕩器 溫度補償 MEMS 振蕩器 TC-MO

    深入了解 MEMS 振蕩器/溫度補償 MEMS 振蕩器(TC-MO)-μPower MO1534/MO1569/MO1576/MO8021
    的頭像 發(fā)表于 07-30 16:38 ?545次閱讀
    <b class='flag-5'>深入了解</b> MEMS 振蕩器 溫度補償 MEMS 振蕩器 TC-MO

    深入了解表面貼裝晶體諧振器DSX1210A

    深入了解表面貼裝晶體諧振器DSX1210A
    的頭像 發(fā)表于 07-25 14:27 ?424次閱讀
    <b class='flag-5'>深入了解</b>表面貼裝晶體諧振器DSX1210A

    深入了解恒溫晶體振蕩器DC5032AS

    深入了解恒溫晶體振蕩器DC5032AS
    的頭像 發(fā)表于 07-25 10:37 ?322次閱讀
    <b class='flag-5'>深入了解</b>恒溫晶體振蕩器DC5032AS

    科普:GPUFPGA,有何異同

    (CPU)是第三種類型。讓我們深入了解GPUFPGA之間的主要區(qū)別、它們的優(yōu)勢、常見用例以及何時選擇其中一種。什么是FPGAFPGA(現(xiàn)
    的頭像 發(fā)表于 06-15 08:27 ?666次閱讀
    科普:<b class='flag-5'>GPU</b>和<b class='flag-5'>FPGA</b>,有何異同

    FPGA芯片你了解多少?

    的缺點。 FPGA和CPU、GPUASIC的芯片等核心區(qū)別是其底層邏輯運算單元的連線及邏輯布局未固化,用戶可通過 EDA 軟件對邏輯單元和開關(guān)陣列編程,進行功能配置,從而去實現(xiàn)特定功能的集成電路芯片
    發(fā)表于 04-17 11:13

    拆解FPGA芯片,帶你深入了解其原理

    拆解FPGA芯片,帶你深入了解其原理 現(xiàn)場可編程門陣列(FPGA)可以實現(xiàn)任意數(shù)字邏輯,從微處理器到視頻生成器或加密礦機,一應(yīng)俱全。FPGA
    發(fā)表于 04-17 11:07

    到底什么是ASICFPGA

    上一篇文章,小棗君給大家介紹了CPU和GPU。今天,我繼續(xù)介紹計算芯片領(lǐng)域的另外兩位主角——ASICFPGA。█ASIC(專用集成電路)上篇提到,
    的頭像 發(fā)表于 04-16 08:05 ?210次閱讀
    到底什么是<b class='flag-5'>ASIC</b>和<b class='flag-5'>FPGA</b>?

    FPGA在深度學習應(yīng)用中或?qū)⑷〈?b class='flag-5'>GPU

    現(xiàn)場可編程門陣列 (FPGA) 解決了 GPU 在運行深度學習模型時面臨的許多問題 在過去的十年里,人工智能的再一次興起使顯卡行業(yè)受益匪淺。英偉達 (Nvidia) 和 AMD 等公司的股價也大幅
    發(fā)表于 03-21 15:19

    到底什么是ASICFPGA

    ASICFPGA的區(qū)別,還有它們和CPU、GPU之間的區(qū)別。 ASICFPGA,本質(zhì)上都是芯片。AISC是全定制芯片,功能寫死,沒辦法
    發(fā)表于 01-23 19:08
    主站蜘蛛池模板: 久久99精品AV99果冻传媒| 好大好爽好深舒服死了| 亚洲色在线| 消息称老熟妇乱视频一区二区| 人妻熟妇乱又伦精品视频中文字幕| 浪潮色诱AV久久久久久久| 精品区2区3区4区产品乱码9| 好色美女小雅| 好男人在线观看免费视频WWW| 国产伦精品一区二区三区免费| 国产传媒18精品A片在线观看| 动漫美女人物被黄漫在线看| 成人无码精品一区二区在线观看| TUBE69CHINESE学生| 阿力gv资源| 成人毛片100部免费看| 成人免费视频网站www| 吃奶啃奶玩乳漫画| 高h乱np甄宓| 国产精品成人自拍| 国产三级在线免费| 护士们的母狗| 久久免费国产视频| 久久综合色悠悠| 免费精品在线视频| 欧美精品专区免费观看| 秋霞在线观看视频一区二区三区| 日本久久中文字幕| 我要女人的全黄录像| 亚洲AV无码乱码在线观看浪潮 | 日韩一级精品久久久久| 少女10声大哥喊退色狼| 亚洲 日本 天堂 国产 在线| 亚洲精品久久久无码| 一本色道久久综合亚洲AV蜜桃| 中文字幕成人在线观看| ass女人下部欣赏| 国产精品第1页| 九色PORNY真实丨首页| 免费观看激烈日板子| 日本午夜福利无码高清|